
1

CAN Communication

using STM32F4 Discovery Board

CAN History
1. In 1985 Bosch originally developed CAN, a high-integrity serial bus system

for networking intelligent devices, to replace automotive point-to-point
wiring systems.

2. As vehicle electronics became pervasive, complex wire harnesses which
were heavy, expensive and bulky were replaced with CAN throughout the
automotive industry.

3. In 1993 CAN became the international standard known as ISO 11898.

4. Since 1994, several widely used higher-level protocols have been
standardized on top of CAN, such as CANopen* and DeviceNet.

5. In 1996 the OnBoard Diagnostics OBD-II standard which incorporates CAN
becomes mandatory for all cars and light trucks sold in the United States.

6. Today markets including surface transportation, industrial automation,
maritime and avionics systems have widely adopted CAN.

7. Today CAN is incorporated into many microcontrollers

2

Vehicles Before CAN:
Expensive, bulky point
to point wiring, wiring
harnesses and many
connectors.

Vehicles After CAN:
Systems of Systems
with multiple CAN
busses, simplified
wiring harnesses and
many Fewer
connectors

Before CAN

After CAN

CAN is Now Central to Automotive Networks

New cars typically contain
50 to 100 microcontrollers

Advantages of CAN

1. Low cost network infrastructure which is often built into
microcontrollers.

2. Large market segment with broad availability of hardware,
software and systems engineering tools.

3. Light weight, low latency, highly deterministic design
specifically for real-time embedded applications.

4. Reliable with strong error detection, fault tolerant versions
available.

5. Flexible and highly configurable with various higher level
application protocols.

6. Foundation for next generation technology controller area
networks.

5

CAN & International Standards
Organization (ISO) Open Systems

Interconnect (OSI) Reference Model

6

High level CAN Protocols implement Application layer and skip the four intervening layers

The CANopen Application

7

High level CAN Protocols implement Application layers and skip the four intervening layers

ISO 11898 CAN Data Link Layer

ISO 11898 CAN Physical Layer

Application
CiA 301 CANopen Application Layer &

Communication Profile

CiA 302 CANopen Framework for CANopen
Managers & Programmable Devices

CiA 4xx Device Profiles

CiA 401
Generic I/O

Profile

CiA 402
Motion Control

Profile

IEC 61131-3
Programmable
Devices Profile

Not Implemented by CAN or CANopen

CAN Data-Flow Model

One node transmits, all nodes listen and processor data frames selectively.
Message filtering is typically performed in transceiver hardware. This data flow
supports a broad range of network communication models:

1. Master / Slave : All communications initialed by master node
2. Peer-to-Peer : Nodes interact with autonomously with equal authority
3. Producer / Consumer : Producer nodes broadcast (push) messages to

Consumer nodes
4. Client / Server : Client nodes request (pull) data from Server nodes

CAN
NODE 1
Receives
Message

CAN
NODE 2

Transmits
Message

CAN
NODE 3
Ignores

Message

CAN
NODE 4
Receives
Message

8

CAN Typical High-Speed Physical Layer

• CAN uses differential signaling to improve
signal to noise ratio. Termination resistors
reduce signal reflection.

• Idle bus state is Recessive with no applied

differential signal: VCAN_H ≈ VCAN_L

• Dominant state occurs when one or more
nodes drive the bus state to: VDIFF

9

CAN Differential Bus Interface Transceivers

• The CAN idle state presents a recessive state, signaled by a small differential voltage across CANH
and CANL. With the indicated split termination, this idle voltage will be halfway between VDD
(positive supply) and VSS (ground).

• The CAN dominant state occurs when one or more transceivers simultaneously close the
indicated transistor switches driving CANH and CANL toward VDD and VSS, respectively.

• This open collector transistor switch configuration is referred to as a “wired or” since any node
transmitting a dominant bit always overrides a recessive bit. Since a dominant bit represents a
logic 0, this arrangement is sometimes referred to as “wired and” since bus a logic “1” state is
achieved only if all nodes (node 1 AND node 2 AND node 3 …) signal logic “1” recessive bits).

Micro-
controller

Transceiver Additional
Transceivers …

Transistor
Switches

60Ω

60Ω

Split
Termination

Example

Capacitive
coupling
to ground

10

Example of a “Wired OR”

Closing Node A switch OR closing Node B switch turns on the light.

Conversely, the light is off unless Node A switch is open AND
Node B switch is also open.

11

Example CAN Sample Signaling

12

Dominant bus state = logic 0

Recessive bus state = logic 1

CAN Logic & Arbitration
1. CAN 2.0A messages begin with an 11-bit message ID which identifies the

message type and also establishes the message priority.

2. As with many computer interfaces, the CAN transceivers invert the
microcontroller signal. Thus, the dominant bus state occurs when a logic “0”
is transmitted and the recessive state occurs when a logic “1” is transmitted.

3. CAN uses the message ID to perform bus access arbitration between nodes.

4. Each node waits for an idle bus state then begins to transmit its message ID.

5. Each node also listens to the bus to see if the bus state match its
transmission.

6. If a node detects a dominant bus state while transmitting a recessive
message ID bit (logic “1”), it drops out of the current arbitration round and
will try again the next time the bus is idle

13

7-bit CANopen Node ID Arbitration Example

Key Advantages of CAN Bus Arbitration

1. Fast & deterministic.

2. Highest priority message gets immediate access
once the bus is available.

3. Arbitration is essential “free” since message ID
encodes message priority.

4. Unlike Carrier Sense Multiple Access with Collision
Detect (CSMA/CD) arbitration propagation delays
never cause message collisions.

CAN Data Frame Format

16

Before you begin

• Connect CAN cable
to the CAN
connector of the
board

• Correct polarity

New STM32 project

Pinout Selection

• CAN1: Master Mode

• I2C1: I2C

• I2C3: I2C

• USART2: Asynchronous

• USART3: Asynchronous

Clock Configuration
• Select Clock Configuration Tab

• Check 42MHz for APB1 peripheral clocks

CAN Parameters
• Select Pinout &

Configuration
Tab

• Click CAN1 and
select
Parameter
Settings

• Change Time
Quanta to 4
Times and 2
Times

• Change
Prescaler to 6

CAN bit timing
• 42Mhz/6=7MHz

• 1/7MHz=142.851743 nsec

• 1+4+2=7

• 2/7=0.29

CAN Interrupt Setting

• Select NVIC Settings

• Check CAN1 RX0 interrupts

main.c(1)
/* USER CODE BEGIN PV */

CAN_HandleTypeDef hcan1;

CAN_TxHeaderTypeDef TxHeader;

CAN_RxHeaderTypeDef RxHeader;

uint8_t TxData[8];

uint8_t RxData[8];

uint32_t TxMailbox;

/* USER CODE END PV */

/* USER CODE BEGIN 2 */

/* Test CAN data transmission */

TxData[0] = 0x12;

TxData[1] = 0x34;

if (HAL_CAN_AddTxMessage(&hcan1, &TxHeader, TxData, &TxMailbox) != HAL_OK)

{

/* Transmission request Error */

Error_Handler();

}

/* USER CODE END 2 */

main.c(2)
static void MX_CAN1_Init(void)

{

/* USER CODE BEGIN CAN1_Init 0 */

CAN_FilterTypeDef sFilterConfig;

/* USER CODE END CAN1_Init 0 */

main.c(3)
/* USER CODE BEGIN CAN1_Init 2 */

/*##-2- Configure the CAN Filter ###*/

sFilterConfig.FilterBank = 0;

sFilterConfig.FilterMode = CAN_FILTERMODE_IDMASK;

sFilterConfig.FilterScale = CAN_FILTERSCALE_32BIT;

sFilterConfig.FilterIdHigh = 0x0000;

sFilterConfig.FilterIdLow = 0x0000;

sFilterConfig.FilterMaskIdHigh = 0x0000;

sFilterConfig.FilterMaskIdLow = 0x0000;

sFilterConfig.FilterFIFOAssignment = CAN_RX_FIFO0;

sFilterConfig.FilterActivation = ENABLE;

sFilterConfig.SlaveStartFilterBank = 14;

if (HAL_CAN_ConfigFilter(&hcan1, &sFilterConfig) != HAL_OK)

{

/* Filter configuration Error */

Error_Handler();

}

main.c(4)
/*##-3- Start the CAN peripheral ###*/

if (HAL_CAN_Start(&hcan1) != HAL_OK)

{

/* Start Error */

Error_Handler();

}

/*##-4- Activate CAN RX notification #######################################*/

if (HAL_CAN_ActivateNotification(&hcan1, CAN_IT_RX_FIFO0_MSG_PENDING) != HAL_OK)

{

/* Notification Error */

Error_Handler();

}

main.c(5)

/*##-5- Configure Transmission process #####################################*/

TxHeader.StdId = 0x001;

//TxHeader.ExtId = 0x01;

TxHeader.RTR = CAN_RTR_DATA;

TxHeader.IDE = CAN_ID_STD;

TxHeader.DLC = 8;

TxHeader.TransmitGlobalTime = DISABLE;

/* USER CODE END CAN1_Init 2 */

main.c(6)
/* USER CODE BEGIN 4 */

void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan)

{

/* Get RX message */

if (HAL_CAN_GetRxMessage(hcan, CAN_RX_FIFO0, &RxHeader, RxData) != HAL_OK)

{

/* Reception Error */

Error_Handler();

}

TxData[0] = RxData[0];

TxData[1] = RxData[1];

if (HAL_CAN_AddTxMessage(&hcan1, &TxHeader, TxData, &TxMailbox) != HAL_OK)

{

/* Transmission request Error */

Error_Handler();

}

}

/* USER CODE END 4 */

PCANView

• Get ready PCANView and run the program

PCANView
• Right click to create a New CAN message

• Manual transmission: 0ms Period

PCANView

• Double click the message to transmit CAN
data from PC to the board

Change to 500 Kbit/sec

• 1+10+3=14

• 3/14=0.21

