Digital Control & Real-Time

Control System

analog/digital
circuit

control
signal

command plant

sensor

Digital Control System

Digﬂal Comp_uter

e

Control

+ Signal
Command—(O—»| Controller —» D/A J - Plant |

A/D |&— Sensor

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L

a0 NOowmTan X E 3o o
1 [¥

#4-discove:
B, Mo

DIGITAL (PWM~)

Real-Time

= Real-Time Is the essential part in digital control

= “Areal-time system is one in which the correctness of
the computations not only depends upon the logical
correctness of the computation but also upon the time at
which the result is produced. If the timing constraints of
the system are not met, system failure is said to have
occurred.”

= Late correct answer is wrong answer!

Real-Time

“Real-time in operating systems: The abillity of the
operating system to provide a required level of service in
a bounded response time.”

POSIX Standard 1003.1

Hard vs Soft Real-Time

= Hard Real-Time
= Absolute deadlines that must be met
= Example: Braking system controller

= Soft Real-Time
= Time tolerance within which an event can occur
= Example: Multimedia streaming

Real-Time OS

Multi-threaded and pre-emptible
Thread priority has to exist

Must support predictable thread synchronization
mechanisms

A system of priority inheritance must exist

Commercial Real-Time OS

Wind River Systems

= VxXWorks

= pSOS

QNX Software Systems
= QNX

Green Hills Software

= Integrity

Mentor Graphics

= VRTX

Figure 4.1 High-level view of an
RTOS, its kernel, and other
components found in
embedded systems.

=
Timers Other
Objects
Objects Message
Queues

C Mailboxes

Counting

Bina Services k Pipes
Semapho‘r‘e"g.' Time Management Services .,
Interrupt Handling Services
Memory Management Services "
Device Management Services
Other Services

Figure 42 Common components in an RTOS kernel that
including objects, the scheduler, and some
services.

Scheduler

Determine which task executes when

Schedulable entities-a kernel object that can compete for
execution on a system-> process, task

Multitasking: many thread of execution appear to be
running concurrently

Scheduler

Context: the state of CPU registers
Context switch

When a new task is created, TCB(task control block) is
also created

TCB: system data structure

Current
Thread of
Execution

List of

Tasks
A

Task 2 3
}
I

Task 1 '

—» Context Switch Time
>

Time

Figure 4.3 Multitasking using a context
switch.

Scheduling Algorithms

= Preemptive priority-based scheduling
= Round-robin scheduling

IGH
i Task Completion

Preemption

Task
Priority

LOW

Time

Figure 4.4 Preemptive priority-based scheduling.

HIGH
Preemption Task Completion

Task

Priority Time Sliccla

LOW

Time

Figure 45 Round-robin and preemptive scheduling.

LinuX

Source code freely available

Robust and reliable

Modular, configurable, scalable

Superb support for networking and Internet
No runtime licenses

Large pool of skilled developers

OpenGL commands or o G L
Gez:::tfy Tt:’);ttl:e Sgut';d shaders written in GLSL pen
a

(vertex, tesselation control, tessellation evaluation,
geometry, fragment and compute shaders)

Game engine

subroutine
calls

system calls

Windowing

library (SDL, Subroutines
S 4
GNU

C Library Subroutines Subroutines

System Call Interface (SCI)

S

Hardware

**

Display Graphics
Screen controller RAM

Interrupt Latency

= Traditional UNIX Operating systems suffer from large
Interrupt latency

= How to reduce the interrupt latency?

= Make kernel highly preemptible by changing its internal structure
(minimizing interrupt disabling) or adding a set of preemption
points

= Microkernel approach

Definition of Interrupt Latency

Interrupt latency(t,), response(ty), and recovery
(tzc) times, T,: time for saving CPU contexts, T,:

time for restoring CPU contexts

Interrupt request

<> i
T, -

A 4

Tasks

Linux and Real-Time

= Linux is not Real-Time

= Monolithic Kernel: The Linux kernel uses coarse grained
synchronization, which allows a kernel task exclusive
access to some data for long periods. This could delay
the execution of any POSIX real-time task that needs
access to that same data.

= Not Preemptible in Kernel Mode: The Linux kernel does
not preempt the execution of any task during system
calls. If a low priority process is in the middle of a system
call and a message Is received for a real-time process,
the message will unfortunately be held in the queue until
the system call completes, despite its low priority.

Linux and Real-Time

= Resource Lock: Linux makes high priority tasks wait for
low priority tasks to release resources. For example, if
any process allocates the last network buffer and a
higher priority process needs a network buffer to send a
message, the higher priority process must wait until
some other process releases a network buffer before it
can send its message.

= Priority Scheduling: The Linux scheduling algorithm will
sometimes give the most unimportant and nicest process
a time slice, even in circumstances when a higher
priority process Is ready to execute.

Linux Kernel 2.4 vs 2.6

1,133

Average response times,
24 vs. 26 kernel
(microseconds)

@ Interrupt response
W Task response

Linux Kernel 2.4 vs 2.6

158,660 worst case response times,
24 vs. 256 kernel
(microseconds)

@ Interrupt response
B Task response

4 508

Cortex-M4 Processor Overview

with ARM Processors and Architectures

Introduction

ARM

ARM was developed at Acorn Computer Limited of Cambridge, UK (between
1983 & 1985)

RISC concept introduced in 1980 at Stanford and Berkeley

ARM founded in November 1990
Advanced RISC Machines

Best known for its range of RISC processor cores designs

Other products — fabric IP, software tools, models, cell libraries - to help partners
develop and ship ARM-based SoCs

ARM does not manufacture silicon

Licensed to partners to develop and fabricate new micro-controllers
Soft-core

ARM Architecture

Based upon RISC Architecture with enhancements to meet requirements of
embedded applications

A large uniform register file

Load-store architecture
@ LDR, STR : "Load register” and “Store register”

e Examples:
e LDR R1, [RO] ; load into R1 the content of the memory

location whose address is in RO
o STR R1, [RO] ; store the contents of R1 into the memory
location whose address is in RO
Fixed length instructions
32-bit processor (v1-v7), 64-bit processor (v8)
Good speed/power
High code density

Enhancement to Basic RISC

Control over both ALU and shifter for every data processing operations
ADD 2,13, r4, LSL#2 ;r2=r3+ (r4 * 4) Operand Operand

1 2
Shifter

Auto-increment and auto-decrement addressing modes
To optimize program loops
Load/Store multiple data instructions
To maximize data throughput
LDM, STM j
Conditional execution of instructions
To maximize execution throughput
B Example: ADDEQTO, r1, r2

Instruction will only be executed when the zero
flag is set to 1

Result

Embedded Processors

Classic
ARM Processors

Embedded
Cortex Processors

Application Processors

ARM Processors (SOrteEX Processors

ARM11MP

ARM1176)Z(F)-S
ARM926E]-S

oy

ARM Processor Family

Cortex-A73 Application
rocessors
System capability & ’ . P ith MMU
performance ortex-A72 (Wlt ’
Cortex-A57 support Linux,
, Cortex-A53 MS mobile OS)
Cortex-Al5 . ortex-A35
Cortex-Al7 Cortex-A32
Cortex-A9 Cortex-Al2
Cortex-A7 / \
Cortex-A8 Cortex-R8
u Real Time
| Cortex-A5 U processors
- J Cortex-R7 \ /
ARMI ™ C %J R5
. ortex-
ARM926TM series /_ \
Cortex-R4 u Microcontrollers
u Cortex-M7 and deeply
u Cortex-M4 embedded
ARM920T™, _ J
ARM940T™ ARM946™ Cortex-M3 u
ARM966™ - CHex-MU Cortex-M0+
Cortex-MI|
ARM7™ series (FPGA)
[Classic ARM Processors J ARM Cortex Processors J

Summary of Processor Characteristics

Application processors

Real-time processors

Microcontroller

processors

Design High clock frequency, High clock frequency, Short pipeline,
Long pipeline, Long to medium ultra low power,
High performance, pipeline length, Deterministic (low
Multimedia support (NEON Deterministic (low interrupt latency)
instruction set extension) interrupt latency)
System Memory Management Unit Memory Protection Memory Protection Unit
features (MMU), Unit (MPU), cache (MPU), Nested Vectored
cache memory, memory, Tightly Interrupt Controller
ARM TrustZone® security Coupled Memory (NVIC), Wakeup Interrupt
extension (TCM™) Controller (WIC)
Targeted Mobile computing, smart Industrial Microcontrollers,
markets phones, microcontrollers, Deeply embedded

energy-efficient servers,
high-end microprocessors

automotives,
Hard disk controllers,
Baseband modem

systems (e.g. sensors,
MEMS, mixed signal IC),
Internet of Things (loT)

Pipeline

* Pipelining allows hardware resources to be fully utilized
* One 32-bit instruction or two 16-bit instructions can be fetched.

Clock

|

Instruction Instruction Instruction

Instruction i Fetch Decode Execution

Instruction Instruction Instruction

Instruction i + 1 Fetch Decode Execution

.. Instruction Instruction Instruction
Instruction i + 2

Fetch Decode Execution

Pipeline of 32-bit instructions

1. Fetch
instruction at
PC address
3. Execute 2. Decode
the the
instruction instruction

|

ARM Cortex Advanced Processors

Architectural innovation, compatibility i ey
across diverse application spectrum Cortex

Low-Power Leadership from ARM*

= ARM Cortex-A family:

= Applications processors for feature-
rich OS and 3™ party applications

= ARM Cortex-R family:

= Embedded processors for real-time
signal processing, control applications

= ARM Cortex-M family:

= Microcontroller-oriented processors
for MCU, ASSP, and SoC applications

. Cortex-M0
12k gates...

Application Examples

Cortex-A '

servers set-top boxes netbooks mobile applications

Cortex-R

digital cameras mobile baseband

?
’

appliances motors

ARM Architecture Overview

Architecture History

V4

version

ARM102xE XScale™

ARMv/

ARMv6

ARMI1136JF-S™

ARMI1026EJ-S™

ARMI1176JZF-S™

ARMI1156T2F-S™

ARMv5 .O' . O
. ARM9X6E___ARMS
ARM7TDMI-s™ StrongARM ARM92xT
SCI00™ ARM720T™
— : : : | | —
1994 1996 1998 2000 2002 2004 2008me

Development of the ARM Architecture

v4 v5 (¢} v/

Halfword and ! Improved : SIMD Instructions Thumb-2
signed halfword : interworking : Multi-processing
/ byte support CLZ _ _ v6 M_emory architecture ! Architecture Profiles

: Saturated arithmetic : Unaligned data support : o
Systemmode i DSP MAC i 7-A - Applications

: instructions : Extensions: : 7-R - Real-time
Thumb i Thumb-2 (6T2) : 7-M - Microcontroller
instruction set Extensions: ! TrustZone® (6Z) :

(vAT) : Jazelle (5TEJ) i Multicore (6K)
: Thumb only (6-M)

= Note that implementations of the same architecture can be different
= Cortex-A8 - architecture v7-A, with a 13-stage pipeline
= Cortex-A9 - architecture v7-A, with an 8-stage pipeline

Architecture ARMv7 profiles

Application profile (ARMv7-A)
Memory management support (MMU)
Highest performance at low power
Influenced by multi-tasking OS system requirements
TrustZone and Jazelle-RCT for a safe, extensible system
e.g. Cortex-A5, Cortex-A9

Real-time profile (ARMv7-R)
Protected memory (MPU)
Low latency and predictability ‘real-time’ needs
Evolutionary path for traditional embedded business
e.g. Cortex-R4

Microcontroller profile (ARMv7-M, ARMv7E-M, ARMv6-M)
Lowest gate count entry point
Deterministic and predictable behavior a key priority
Deeply embedded use
e.g. Cortex-M3

Which architecture is my processor?

Classic Application Embedded
ARM Processors (Gortex Processors Cortex Processors
Cortex-Al
(Cortex-AY

(9a

ARM11MP IEEOTTEX=AB

ARM926 ARM176]Z INGEOrTEX=AY,

SC300 SC000

Cortex-M3 B Cortex-M1

Cortex-M0

ARMvZM/ME ARMv6M

Thumb
NVIC
e

SC100 ARM968 ARM1136| EGEOTTEX=AS

ARM7TDMI ARM946 ARM1156T2 I Cortex-R4
ARMv4T ARMV5T) ARMvé6 ARMvV7A/R
ARM 32-Bit ISA

Thumb 16-Bit ISA

Thumb-2 Mixed ISA
VFPy3

VEPv2 VFPy2

Jazelle Jazelle Jazelle

TrustZone TrustZone

SIMD SIMD

NEON

Virtualization

Cotex-M Processor Family

Cortex-MO A very small processor (starting from 12K gates) for low cost, ultra low power
microcontrollers and deeply embedded applications

Cortex-MO+ The most energy-efficient processor for small embedded system. Similar size and
programmer’s model to the Cortex-MO processor, but with additional features like
single cycle I/O interface and vector table relocations

Cortex-M1 A small processor design optimized for FPGA designs and provides Tightly Coupled

Memory (TCM) implementation using memory blocks on the FPGAs. Same
instruction set as the Cortex-MO

Cortex-M3 A small but powerful embedded processor for low-power microcontrollers that has
a rich instruction set to enable it to handle complex tasks quicker. It has a
hardware divider and Multiply-Accumulate (MAC) instructions. In addition, it also
has comprehensive debug and trace features to enable software developers to
develop their applications quicker

Cortex-M4 It provides all the features on the Cortex-M3, with additional instructions target at
Digital Signal Processing (DSP) tasks, such as Single Instruction Multiple Data
(SIMD) and faster single cycle MAC operations. In addition, it also have an optional
single precision floating point unit that support IEEE 754 floating point standard

Cortex-M7 High-performance processor for high-end microcontrollers and processing
intensive applications. It has all the ISA features available in Cortex-M4, with
additional support for double-precision floating point, as well as additional

memory features like cache and Tightly Coupled Memory (TCM)

ARMv7-M Architecture

ARMv7-M Profile Overview

v7-M Cores are designed to support the microcontroller market
Simpler to program — entire application can be programmed in C
Fewer features needed than in application processors

Register and ISA changes from other ARM cores
No ARM instruction set support
Only one set of registers
XPSR has different bits than CPSR

Different modes and exception models
Only two modes: Thread mode and Handler mode
Vector table is addresses, not instructions
Exceptions automatically save state (r0-r3, r12, Ir, XPSR, pc) on the stack

Different system control/memory layout
Cores have a fixed memory map
No coprocessor 15 — controlled through memory mapped control registers

Cortex-M3

Cortex"‘-M3

ARMv7-M Architecture
= Thumb-2 only
Fully programmable in C
3-stage pipeline
Optional MPU
AHB-Lite bus interface
Fixed memory map
1-240 interrupts
= Configurable priority levels
= Non-Maskable Interrupt support
= Debug and Sleep control
Serial wire or JTAG debug
Optional ETM

Cortex-MO

Cortex™-M0

Wiake Up Interrupt Controller Interface

Interface Access Port

ARMvV6-M Architecture

= 16-bit Thumb-2 with system control
instructions

Fully programmable in C
3-stage pipeline
AHB-Lite bus interface
Fixed memory map
1-32 interrupts
= Configurable priority levels
= Non-Maskable Interrupt support

Low power support

Core configured with or without
debug

= Variable number of watchpoints and
breakpoints

Thumb-2 Technology

* Thumb-2 ISA was introduced in ARMv7 architecture

= QOriginal16-bit Thumb instructions maintain full compatibility with existing code

+
= New 16-bit Thumb instructions for improved program flow

+

= New 32-bit Thumb instructions for improved performance and code size.
One 32-bit instruction replaces multiple 16-bit opcodes.
32-bit instructions are handled in the same mode ~ no interworking required

Instruction flow

ARM | 32-bit l 32-bit I 32-bit | 32-bi; | 32-bit |

Thumb [16-bit | 16-bit | 16-bit 16-bit | 16-bit 16-6it | 16-bit 10-bit | 16-bit | 16-bit]

Thumb

decoder

Thumb-2 | @6] 32-bit 16-bit | 16-bit | 16-bit 32-bit | 16bit |

