
Digital Control & Real-Time

Control System

+
controller plant

sensor

control
signal

command

analog/digital
circuit

Digital Control System

+
Controller Plant

Sensor

Control
Signal

Command

Digital Computer

D/A

A/D

Real-Time

 Real-Time is the essential part in digital control

 “A real-time system is one in which the correctness of

the computations not only depends upon the logical

correctness of the computation but also upon the time at

which the result is produced. If the timing constraints of

the system are not met, system failure is said to have

occurred.”

 Late correct answer is wrong answer!

Real-Time

 “Real-time in operating systems: The ability of the

operating system to provide a required level of service in

a bounded response time.”

 POSIX Standard 1003.1

Hard vs Soft Real-Time

 Hard Real-Time

 Absolute deadlines that must be met

 Example: Braking system controller

 Soft Real-Time

 Time tolerance within which an event can occur

 Example: Multimedia streaming

Real-Time OS

 Multi-threaded and pre-emptible

 Thread priority has to exist

 Must support predictable thread synchronization

mechanisms

 A system of priority inheritance must exist

Commercial Real-Time OS

 Wind River Systems

 VxWorks

 pSOS

 QNX Software Systems

 QNX

 Green Hills Software

 Integrity

 Mentor Graphics

 VRTX

Scheduler

 Determine which task executes when

 Schedulable entities-a kernel object that can compete for

execution on a system-> process, task

 Multitasking: many thread of execution appear to be

running concurrently

Scheduler

 Context: the state of CPU registers

 Context switch

 When a new task is created, TCB(task control block) is

also created

 TCB: system data structure

Scheduling Algorithms

 Preemptive priority-based scheduling

 Round-robin scheduling

Linux

 Source code freely available

 Robust and reliable

 Modular, configurable, scalable

 Superb support for networking and Internet

 No runtime licenses

 Large pool of skilled developers

Interrupt Latency

 Traditional UNIX Operating systems suffer from large

interrupt latency

 How to reduce the interrupt latency?

 Make kernel highly preemptible by changing its internal structure

(minimizing interrupt disabling) or adding a set of preemption

points

 Microkernel approach

Definition of Interrupt Latency

Linux and Real-Time

 Linux is not Real-Time

 Monolithic Kernel: The Linux kernel uses coarse grained

synchronization, which allows a kernel task exclusive

access to some data for long periods. This could delay

the execution of any POSIX real-time task that needs

access to that same data.

 Not Preemptible in Kernel Mode: The Linux kernel does

not preempt the execution of any task during system

calls. If a low priority process is in the middle of a system

call and a message is received for a real-time process,

the message will unfortunately be held in the queue until

the system call completes, despite its low priority.

Linux and Real-Time

 Resource Lock: Linux makes high priority tasks wait for

low priority tasks to release resources. For example, if

any process allocates the last network buffer and a

higher priority process needs a network buffer to send a

message, the higher priority process must wait until

some other process releases a network buffer before it

can send its message.

 Priority Scheduling: The Linux scheduling algorithm will

sometimes give the most unimportant and nicest process

a time slice, even in circumstances when a higher

priority process is ready to execute.

Linux Kernel 2.4 vs 2.6

Linux Kernel 2.4 vs 2.6

25
University Program Material

Copyright © ARM Ltd 2012

Cortex-M4 Processor Overview

with ARM Processors and Architectures

26
University Program Material

Copyright © ARM Ltd 2012

Introduction

27
University Program Material

Copyright © ARM Ltd 2012

ARM

 ARM was developed at Acorn Computer Limited of Cambridge, UK (between

1983 & 1985)

 RISC concept introduced in 1980 at Stanford and Berkeley

 ARM founded in November 1990

 Advanced RISC Machines

 Best known for its range of RISC processor cores designs

 Other products – fabric IP, software tools, models, cell libraries - to help partners

develop and ship ARM-based SoCs

 ARM does not manufacture silicon

 Licensed to partners to develop and fabricate new micro-controllers

 Soft-core

28
University Program Material

Copyright © ARM Ltd 2012

ARM Architecture

 Based upon RISC Architecture with enhancements to meet requirements of

embedded applications

 A large uniform register file

 Load-store architecture

 Fixed length instructions

 32-bit processor (v1-v7), 64-bit processor (v8)

 Good speed/power

 High code density

29
University Program Material

Copyright © ARM Ltd 2012

Enhancement to Basic RISC

 Control over both ALU and shifter for every data processing operations

 ADD r2, r3, r4, LSL #2 ; r2 = r3 + (r4 * 4)

 Auto-increment and auto-decrement addressing modes

 To optimize program loops

 Load/Store multiple data instructions

 To maximize data throughput

 LDM, STM

 Conditional execution of instructions

 To maximize execution throughput

30
University Program Material

Copyright © ARM Ltd 2012

Embedded Processors

31
University Program Material

Copyright © ARM Ltd 2012

Application Processors

32
University Program Material

Copyright © ARM Ltd 2012

ARM Processor Family

33
University Program Material

Copyright © ARM Ltd 2012

Summary of Processor Characteristics

34
University Program Material

Copyright © ARM Ltd 2012

Pipeline

35
University Program Material

Copyright © ARM Ltd 2012

ARM Cortex Advanced Processors

36
University Program Material

Copyright © ARM Ltd 2012

Application Examples

37
University Program Material

Copyright © ARM Ltd 2012

ARM Architecture Overview

38
University Program Material

Copyright © ARM Ltd 2012

Architecture History

39
University Program Material

Copyright © ARM Ltd 2012

Halfword and

signed halfword

/ byte support

System mode

Thumb

instruction set

(v4T)

Improved

interworking

CLZ

Saturated arithmetic

DSP MAC

instructions

Extensions:

Jazelle (5TEJ)

SIMD Instructions

Multi-processing

v6 Memory architecture

Unaligned data support

Extensions:

Thumb-2 (6T2)

TrustZone® (6Z)

Multicore (6K)

Thumb only (6-M)

 Note that implementations of the same architecture can be different

 Cortex-A8 - architecture v7-A, with a 13-stage pipeline

 Cortex-A9 - architecture v7-A, with an 8-stage pipeline

Thumb-2

Architecture Profiles

7-A - Applications

7-R - Real-time

7-M - Microcontroller

v4 v5 v6 v7

Development of the ARM Architecture

40
University Program Material

Copyright © ARM Ltd 2012

Architecture ARMv7 profiles

 Application profile (ARMv7-A)

 Memory management support (MMU)

 Highest performance at low power

 Influenced by multi-tasking OS system requirements

 TrustZone and Jazelle-RCT for a safe, extensible system

 e.g. Cortex-A5, Cortex-A9

 Real-time profile (ARMv7-R)

 Protected memory (MPU)

 Low latency and predictability ‘real-time’ needs

 Evolutionary path for traditional embedded business

 e.g. Cortex-R4

 Microcontroller profile (ARMv7-M, ARMv7E-M, ARMv6-M)

 Lowest gate count entry point

 Deterministic and predictable behavior a key priority

 Deeply embedded use

 e.g. Cortex-M3

41
University Program Material

Copyright © ARM Ltd 2012

Which architecture is my processor?

42
University Program Material

Copyright © ARM Ltd 2012

Cotex-M Processor Family

43
University Program Material

Copyright © ARM Ltd 2012

ARMv7-M Architecture

44
University Program Material

Copyright © ARM Ltd 2012

ARMv7-M Profile Overview

 v7-M Cores are designed to support the microcontroller market

 Simpler to program – entire application can be programmed in C

 Fewer features needed than in application processors

 Register and ISA changes from other ARM cores

 No ARM instruction set support

 Only one set of registers

 xPSR has different bits than CPSR

 Different modes and exception models

 Only two modes: Thread mode and Handler mode

 Vector table is addresses, not instructions

 Exceptions automatically save state (r0-r3, r12, lr, xPSR, pc) on the stack

 Different system control/memory layout

 Cores have a fixed memory map

 No coprocessor 15 – controlled through memory mapped control registers

45
University Program Material

Copyright © ARM Ltd 2012

Cortex-M3

Cortex M3 Total

60k* Gates

 ARMv7-M Architecture

 Thumb-2 only

 Fully programmable in C

 3-stage pipeline

 Optional MPU

 AHB-Lite bus interface

 Fixed memory map

 1-240 interrupts

 Configurable priority levels

 Non-Maskable Interrupt support

 Debug and Sleep control

 Serial wire or JTAG debug

 Optional ETM

46
University Program Material

Copyright © ARM Ltd 2012

Cortex-M0

Cortex M3 Total

60k* Gates

 ARMv6-M Architecture

 16-bit Thumb-2 with system control

instructions

 Fully programmable in C

 3-stage pipeline

 AHB-Lite bus interface

 Fixed memory map

 1-32 interrupts

 Configurable priority levels

 Non-Maskable Interrupt support

 Low power support

 Core configured with or without

debug

 Variable number of watchpoints and

breakpoints

47
University Program Material

Copyright © ARM Ltd 2012

Thumb-2 Technology

