
Digital Control & Real-Time

Control System

+
controller plant

sensor

control
signal

command

analog/digital
circuit

Digital Control System

+
Controller Plant

Sensor

Control
Signal

Command

Digital Computer

D/A

A/D

Real-Time

 Real-Time is the essential part in digital control

 “A real-time system is one in which the correctness of

the computations not only depends upon the logical

correctness of the computation but also upon the time at

which the result is produced. If the timing constraints of

the system are not met, system failure is said to have

occurred.”

 Late correct answer is wrong answer!

Real-Time

 “Real-time in operating systems: The ability of the

operating system to provide a required level of service in

a bounded response time.”

 POSIX Standard 1003.1

Hard vs Soft Real-Time

 Hard Real-Time

 Absolute deadlines that must be met

 Example: Braking system controller

 Soft Real-Time

 Time tolerance within which an event can occur

 Example: Multimedia streaming

Real-Time OS

 Multi-threaded and pre-emptible

 Thread priority has to exist

 Must support predictable thread synchronization

mechanisms

 A system of priority inheritance must exist

Commercial Real-Time OS

 Wind River Systems

 VxWorks

 pSOS

 QNX Software Systems

 QNX

 Green Hills Software

 Integrity

 Mentor Graphics

 VRTX

Scheduler

 Determine which task executes when

 Schedulable entities-a kernel object that can compete for

execution on a system-> process, task

 Multitasking: many thread of execution appear to be

running concurrently

Scheduler

 Context: the state of CPU registers

 Context switch

 When a new task is created, TCB(task control block) is

also created

 TCB: system data structure

Scheduling Algorithms

 Preemptive priority-based scheduling

 Round-robin scheduling

Linux

 Source code freely available

 Robust and reliable

 Modular, configurable, scalable

 Superb support for networking and Internet

 No runtime licenses

 Large pool of skilled developers

Interrupt Latency

 Traditional UNIX Operating systems suffer from large

interrupt latency

 How to reduce the interrupt latency?

 Make kernel highly preemptible by changing its internal structure

(minimizing interrupt disabling) or adding a set of preemption

points

 Microkernel approach

Definition of Interrupt Latency

Linux and Real-Time

 Linux is not Real-Time

 Monolithic Kernel: The Linux kernel uses coarse grained

synchronization, which allows a kernel task exclusive

access to some data for long periods. This could delay

the execution of any POSIX real-time task that needs

access to that same data.

 Not Preemptible in Kernel Mode: The Linux kernel does

not preempt the execution of any task during system

calls. If a low priority process is in the middle of a system

call and a message is received for a real-time process,

the message will unfortunately be held in the queue until

the system call completes, despite its low priority.

Linux and Real-Time

 Resource Lock: Linux makes high priority tasks wait for

low priority tasks to release resources. For example, if

any process allocates the last network buffer and a

higher priority process needs a network buffer to send a

message, the higher priority process must wait until

some other process releases a network buffer before it

can send its message.

 Priority Scheduling: The Linux scheduling algorithm will

sometimes give the most unimportant and nicest process

a time slice, even in circumstances when a higher

priority process is ready to execute.

Linux Kernel 2.4 vs 2.6

Linux Kernel 2.4 vs 2.6

25
University Program Material

Copyright © ARM Ltd 2012

Cortex-M4 Processor Overview

with ARM Processors and Architectures

26
University Program Material

Copyright © ARM Ltd 2012

Introduction

27
University Program Material

Copyright © ARM Ltd 2012

ARM

 ARM was developed at Acorn Computer Limited of Cambridge, UK (between

1983 & 1985)

 RISC concept introduced in 1980 at Stanford and Berkeley

 ARM founded in November 1990

 Advanced RISC Machines

 Best known for its range of RISC processor cores designs

 Other products – fabric IP, software tools, models, cell libraries - to help partners

develop and ship ARM-based SoCs

 ARM does not manufacture silicon

 Licensed to partners to develop and fabricate new micro-controllers

 Soft-core

28
University Program Material

Copyright © ARM Ltd 2012

ARM Architecture

 Based upon RISC Architecture with enhancements to meet requirements of

embedded applications

 A large uniform register file

 Load-store architecture

 Fixed length instructions

 32-bit processor (v1-v7), 64-bit processor (v8)

 Good speed/power

 High code density

29
University Program Material

Copyright © ARM Ltd 2012

Enhancement to Basic RISC

 Control over both ALU and shifter for every data processing operations

 ADD r2, r3, r4, LSL #2 ; r2 = r3 + (r4 * 4)

 Auto-increment and auto-decrement addressing modes

 To optimize program loops

 Load/Store multiple data instructions

 To maximize data throughput

 LDM, STM

 Conditional execution of instructions

 To maximize execution throughput

30
University Program Material

Copyright © ARM Ltd 2012

Embedded Processors

31
University Program Material

Copyright © ARM Ltd 2012

Application Processors

32
University Program Material

Copyright © ARM Ltd 2012

ARM Processor Family

33
University Program Material

Copyright © ARM Ltd 2012

Summary of Processor Characteristics

34
University Program Material

Copyright © ARM Ltd 2012

Pipeline

35
University Program Material

Copyright © ARM Ltd 2012

ARM Cortex Advanced Processors

36
University Program Material

Copyright © ARM Ltd 2012

Application Examples

37
University Program Material

Copyright © ARM Ltd 2012

ARM Architecture Overview

38
University Program Material

Copyright © ARM Ltd 2012

Architecture History

39
University Program Material

Copyright © ARM Ltd 2012

Halfword and

signed halfword

/ byte support

System mode

Thumb

instruction set

(v4T)

Improved

interworking

CLZ

Saturated arithmetic

DSP MAC

instructions

Extensions:

Jazelle (5TEJ)

SIMD Instructions

Multi-processing

v6 Memory architecture

Unaligned data support

Extensions:

Thumb-2 (6T2)

TrustZone® (6Z)

Multicore (6K)

Thumb only (6-M)

 Note that implementations of the same architecture can be different

 Cortex-A8 - architecture v7-A, with a 13-stage pipeline

 Cortex-A9 - architecture v7-A, with an 8-stage pipeline

Thumb-2

Architecture Profiles

7-A - Applications

7-R - Real-time

7-M - Microcontroller

v4 v5 v6 v7

Development of the ARM Architecture

40
University Program Material

Copyright © ARM Ltd 2012

Architecture ARMv7 profiles

 Application profile (ARMv7-A)

 Memory management support (MMU)

 Highest performance at low power

 Influenced by multi-tasking OS system requirements

 TrustZone and Jazelle-RCT for a safe, extensible system

 e.g. Cortex-A5, Cortex-A9

 Real-time profile (ARMv7-R)

 Protected memory (MPU)

 Low latency and predictability ‘real-time’ needs

 Evolutionary path for traditional embedded business

 e.g. Cortex-R4

 Microcontroller profile (ARMv7-M, ARMv7E-M, ARMv6-M)

 Lowest gate count entry point

 Deterministic and predictable behavior a key priority

 Deeply embedded use

 e.g. Cortex-M3

41
University Program Material

Copyright © ARM Ltd 2012

Which architecture is my processor?

42
University Program Material

Copyright © ARM Ltd 2012

Cotex-M Processor Family

43
University Program Material

Copyright © ARM Ltd 2012

ARMv7-M Architecture

44
University Program Material

Copyright © ARM Ltd 2012

ARMv7-M Profile Overview

 v7-M Cores are designed to support the microcontroller market

 Simpler to program – entire application can be programmed in C

 Fewer features needed than in application processors

 Register and ISA changes from other ARM cores

 No ARM instruction set support

 Only one set of registers

 xPSR has different bits than CPSR

 Different modes and exception models

 Only two modes: Thread mode and Handler mode

 Vector table is addresses, not instructions

 Exceptions automatically save state (r0-r3, r12, lr, xPSR, pc) on the stack

 Different system control/memory layout

 Cores have a fixed memory map

 No coprocessor 15 – controlled through memory mapped control registers

45
University Program Material

Copyright © ARM Ltd 2012

Cortex-M3

Cortex M3 Total

60k* Gates

 ARMv7-M Architecture

 Thumb-2 only

 Fully programmable in C

 3-stage pipeline

 Optional MPU

 AHB-Lite bus interface

 Fixed memory map

 1-240 interrupts

 Configurable priority levels

 Non-Maskable Interrupt support

 Debug and Sleep control

 Serial wire or JTAG debug

 Optional ETM

46
University Program Material

Copyright © ARM Ltd 2012

Cortex-M0

Cortex M3 Total

60k* Gates

 ARMv6-M Architecture

 16-bit Thumb-2 with system control

instructions

 Fully programmable in C

 3-stage pipeline

 AHB-Lite bus interface

 Fixed memory map

 1-32 interrupts

 Configurable priority levels

 Non-Maskable Interrupt support

 Low power support

 Core configured with or without

debug

 Variable number of watchpoints and

breakpoints

47
University Program Material

Copyright © ARM Ltd 2012

Thumb-2 Technology

