
Introduction to Real-Time 

Operating Systems



GPOS vs RTOS

General purpose operating systems

Real-time operating systems



GPOS vs RTOS: Similarities

Multitasking

Resource management

OS services to applications

Abstracting the hardware



Characteristics of RTOS

Reliability in embedded application

Scale up or down ability

Faster performance

Reduced memory requirement

Scheduling policies for real-time

Diskless

portability







Kernel Objects

Help developers creates applications for 

real-time embedded systems



Scheduler

Determine which task executes when

Schedulable entities-a kernel object that 

can compete for execution on a system-> 

process, task

Multitasking: many thread of execution 

appear to be running concurrently



Scheduler

Context: the state of CPU registers

Context switch

When a new task is created, TCB(task 

control block) is also created

TCB: system data structure





Scheduling Algorithms

Preemptive priority-based scheduling

Round-robin scheduling







Objects

Tasks

Semaphore: token-like objects for 

synchronization & mutual exclusion

Message queue: buffer-like data structures



Common Real-Time Design Problems

Concurrency

Activity synchronization

Data communication

Developers combine basic kernel objects



Tasks



Defining a Task

A task is an independent thread of 

execution that can compete with each 

other concurrent tasks for processor 

execution time

Developer decompose applications into 

multiple concurrent tasks to optimize the 

handling of inputs and outputs within set 

time constraints



Task States

Ready

Running

Blocked





Ready State

Most kernels support more than one task 

per priority level

Task-ready-list



Running State

 Can move to the blocked state

1. By making a call requesting an un 

available resource

2. By making a call requesting to wait for an 

event to occur

3. By making a call to delay



Blocked State

Without blocked state, lower priority tasks 

could not run!

CPU starvation occurs when higher priority 

tasks use all of the CPU execution time 

and lower priority tasks do not get to run.

A task can only move to the blocked state 

by making a blocking call, requesting that 

some blocking condition be met.



Typical Task Structures

Run-to-completion tasks

Endless-loop tasks



Run-to-Completion Tasks

Application-level initialization task

The application initialization task typically 

has a higher priority than the application 

tasks that it creates so that its initialization 

work is not preempted.



RunToCompletionTask()

{

initialize application

create ‘endless loop tasks’-lower priority

creates kernel objects

delete or suspend this task

}



Endless-Loop Tasks

One or more blocking calls within the body 

of the loop



EndlessLoopTask()

{

initialization code

Loop Forever

{

body of loop

make one or more blocking calls

}

}



Synchronization,Communication and 

Concurrency

Tasks synchronize and communicate by 

using intertask primitives (semaphores, 

message queues, signals, pipes)



Semaphores



Semaphore (Token)

A kernel object

One or more threads of execution can 

acquire or release for the purpose of 

synchronization or mutual exclusion



Semaphore

Semaphore is like a key that allows a task 

to carry out some operation or to access a 

resource. (e.g. a key or keys to the lab)



Semaphore Count

Semaphore (Token) count is initialized 

when created

A task acquire the semaphore: count is 

decremented

A task releases the semaphore: count is 

incremented

Token count = 0 : a requesting task blocks



Binary Semaphore

Value: 0 unavailable/empty

Value: 1 available/full



Counting Semaphore



Mutual Exclusion (Mutex) Semaphore

A special binary semaphore that supports 

ownership, recursive access, task deletion 

safety, priority inversion avoidance 

protocol.



Mutex Ownership

Ownership of a mutex is gained when a 
task first locks the mutex by acquiring it.

A task loses ownership of the mutex when 
it unlocks it by releasing it.

Recursive locking: when a task requiring 
exclusive access to a shared resource 
calls one or more routines that also require 
access to the same resource.



Mutex

Task Deletion Safety: While a task owns a 

mutex, the task cannot be deleted

Priority inversion avoidance



Priority Inversion



Priority Inversion

Priority inversion is a situation in which a 

low-priority task executes while a higher 

priority task wait on it due to resource 

contentions

Task interdependency



Priority Inversion Example



Unbounded Priority Inversion Example



Priority Inheritance Protocol

 R: resource, T: the Task requesting R

1. If R is in use, T is blocked

2. If R is free, R is allocated to T

3. When a task of a higher priority requests 

the same resource, T’s executing priority 

is raised to the requesting task’s priority

4. The task returns to its previous priority 

when it releases R



Priority Inheritance Protocol



Priority Inheritance Protocol

Priority inheritance is dynamic



Typical Semaphore Use

Wait-and-Signal Synchronization



Wait-and-Signal Synchronization

tWaitTask runs first

tWaitTask makes a request to acquire the 

semaphore but blocked

tSignalTask has a chance to run

tSignalTask releases the semaphore

tWaitTask unblocked and running



Wait-and-Signal Synchronization

tWaitTask()

{

…

Acquire binary semaphore

…

}

tSignalTask()

{

…

Release binary semaphore

…

}



Single Shared-Resource-Access 

Synchronization

Danger: problem when the 3rd task release 

-> use mutex



Single Shared-Resource-Access 

Synchronization

tAccessTask()

{

Acquire binary semaphore

Read or write to shared resource

Release binary semaphore

}



Recursive Shared-Resource-Access 

Synchronization

tAccessTask calls -> Routine A -> Routine 

B : need to access to the same shared 

resource



Recursive Shared-Resource-Access 

Synchronization
tAccessTask()

{

…

Acquire mutex

Access shared resource

Call RoutineA

Release mutex

…

}

RoutineA()

{

…

Acquire mutex

Access shared resource

Call RoutineB

Release mutex

…

}

RoutineB()

{

…

Acquire mutex

Access shared resource

Release mutex

…

}



Message Queues



Message Queues

A message queue is a buffer-like object 

through which tasks and ISRs send and 

receive messages to communicate and 

synchronize with data

It temporarily holds message from a 

sender until the intended receiver is ready 

to read them.





Message Queue Content

For long message, use pointer



Typical Message Queue Use
Non-interlocked, one-way data 

communication (loosely coupled)

Not synchronized

Does not require ACK


