Introduction to Real-Time
Operating Systems

GPOS vs RTOS

General purpose operating systems
Real-time operating systems

GPOS vs RTOS: Similarities

Multitasking

Resource management
OS services to applications
Abstracting the hardware

Characteristics of RTOS

Reliability in embedded application
Scale up or down ability

Faster performance

Reduced memory requirement
Scheduling policies for real-time
Diskless

portabllity

Figure 4.1 High-level view of an
RTOS, its kernel, and other
components found in
embedded systems.

?

[|
Timers Other
Objects

BEEE
Message
Queues

Mailboxes

o

B o Services ’
Gl O‘rf‘go Time Management Services
Interrupt Handling Services
Memory Management Services
Device Management Services

Other Services

Figure 42 Common components in an RTOS kernel that
including objects, the scheduler, and some
services.

Kernel Objects

Help developers creates applications for
real-time embedded systems

Scheduler

Determine which task executes when

Schedulable entities-a kernel object that
can compete for execution on a system->
process, task

Multitasking: many thread of execution
appear to be running concurrently

Scheduler

Context: the state of CPU registers
Context switch

When a new task Is created, TCB(task
control block) Is also created

TCB: system data structure

Thread of
Execution

o'

(/2]

=

N
Ty
I

—» |<— Context Switch Time
|

Time

Figure 4.3 Multitasking using a context
switch.

Scheduling Algorithms

Preemptive priority-based scheduling
Round-robin scheduling

HIGH _
Task Completion

Preemption

Task
Priority

LOW

Time

Figure 44 Preemptive priority-based scheduling.

HIGH
% Preemption Task Completion

Task

Priority Time Slice

LOW

Time

Figure 45 Round-robin and preemptive scheduling.

Objects

Tasks

Semaphore: token-like objects for
synchronization & mutual exclusion

Message gueue: buffer-like data structures

Common Real-Time Design Problems

Concurrency
Activity synchronization
Data communication

Developers combine basic kernel objects

Tasks

Defining a Task

A task Is an independent thread of
execution that can compete with each

other concurrent tasks for processor
execution time

Developer decompose applications into
multiple concurrent tasks to optimize the

handling of inputs and outputs within set
time constraints

Task States

Ready
Running
Blocked

Task is initialized and
enters the finite state
machine.

Task is unblocked
but is not the Task no longer has

highest-priority task the highest priority. Task has the
highest priority.

Task is unblocked
and is the
highest-priority
task

Task is blocked
due to a request
for an unavailable
resource.

Figure 5.2 A typical finite state machine for task execution states.

Ready State

Most kernels support more than one task
per priority level
Task-ready-list

Running State

Can move to the blocked state

By making a call requesting an un
available resource

By making a call requesting to walit for an
event to occur

By making a call to delay

Blocked State

Without blocked state, lower priority tasks
could not run!

CPU starvation occurs when higher priority
tasks use all of the CPU execution time
and lower priority tasks do not get to run.

A task can only move to the blocked state
by making a blocking call, requesting that
some blocking condition be met.

Typical Task Structures

Run-to-completion tasks
Endless-loop tasks

Run-to-Completion Tasks

Application-level initialization task

The application initialization task typically
has a higher priority than the application
tasks that it creates so that its initialization
work Is not preempted.

RunToCompletionTask()
{
Initialize application
create ‘endless loop tasks’-lower priority
creates kernel objects
delete or suspend this task

}

Endless-Loop Tasks

One or more blocking calls within the body
of the loop

EndlessLoopTask()
{
Initialization code
Loop Forever
{
body of loop
make one or more blocking calls

Synchronization,Communication and
Concurrency
Tasks synchronize and communicate by

using intertask primitives (semaphores,
message gueues, signals, pipes)

-
Semaphores

Semaphore (Token)

A kernel object

One or more threads of execution can
acquire or release for the purpose of
synchronization or mutual exclusion

Semaphore

Semaphore is like a key that allows a task
to carry out some operation or to access a
resource. (e.g. a key or keys to the lab)

Semaphore Count

Semaphore (Token) count is Iinitialized
when created

A task acquire the semaphore: count is
decremented

A task releases the semaphore: count is
iIncremented

Token count = 0 : a requesting task blocks

Binary Semaphore

Value: O unavailable/empty
Value: 1 available/full

Acquire
(value =0)

Initial
value = 0

Initial
value = 1

Release
(value = 1)

Counting Semaphore

Release
(count = count + 1)

Release
(count=1)

Initial count > 0 Initial count = 0

Acquire
(count = 0)

Acquire
(count = count -1)

Mutual Exclusion (Mutex) Semaphore

A special binary semaphore that supports
ownership, recursive access, task deletion

safety, priority inversion avoidance
prOtOCOI . Acquire (recursive)

: (lock count = lock count +1)
Acquire

(lock count = 1)

Initial
(lock count = 0)

......................

Release
(lock count = 0)

Release (recursive)
(lock count = lock count - 1)

Mutex Ownership

Ownership of a mutex Is gained when a
task first locks the mutex by acquiring it.

A task loses ownership of the mutex when
It unlocks it by releasing it.

Recursive locking: when a task requiring
exclusive access to a shared resource
calls one or more routines that also require
access to the same resource.

Mutex

Task Deletion Safety: While a task owns a
mutex, the task cannot be deleted

Priority inversion avoidance

n
Priority Inversion

Priority Inversion

Priority inversion is a situation in which a
ow-priority task executes while a higher
oriority task wait on it due to resource
contentions

Task interdependency

Priority Inversion Example

Priority Inversion
Priority I< »1
(HIGH) |
I
GIVE |
I
(MEDIUM) E
i
|
:
(LOW) |
| | | | [t
1 t2 t3 t4 t5 t6
Time

Figure 16.6 Priority inversion example.

Unbounded Priority Inversion Example

(HIGH)

(MEDIUM)

(LOW)

TAKE

Priority Inversion

‘ unbounded i

GIVE

t2

t3

t5

Figure 16.7 Unbounded priority inversion example.

Time

Priority Inheritance Protocol

R: resource, T. the Task requesting R

If Risinuse, TIs
If R Is free, R Is al
When a task of a

nigher

nlocked
ocatedto T

oriority requests

the same resource, T's executing priority
IS raised to the requesting task'’s priority

The task returns to its previous priority
when it releases R

Priority Inheritance Protocol

Priority Inversion

Priority ~< >‘
A

(HIGH) : f‘ .
| A | |
! TAKE ! GIVE ! GIVE !
| | | |
(MEDIUM) I I | |
I I | I
| | | |

(LOW) : E V | LP-task

I I I | I | >
t1 t2 t3 t4 t5 t6
Time

Figure 16.8 Priority inheritance protocol example.

Priority Inheritance Protocol

Priority inheritance Is dynamic

Priority Inversion

ﬁ

(HIGH) i .)
1 | I
LPtask | i GNE,
(MEDIUM) : I
i
I
|
|
(LOW) i

, Y
I I I I I i >
t1 t2 t3 t4 t5 t6
Time

Figure 16.9 Transitive priority promotion example.

Typical Semaphore Use

» Walt-and-Signal Synchronization

Binary Semaphore
(Initial value = 0)

Figure 6.5 Wait-and-signal synchronization
between two tasks.

Walit-and-Signal Synchronization

tWaitTask runs first

tWaitTask makes a request to acquire the
semaphore but blocked

tSignalTask has a chance to run
tSignalTask releases the semaphore
tWaitTask unblocked and running

Walit-and-Signal Synchronization

tWaitTask()
{

Acquire binary semaphore

}
tSignalTask()

{

Release binary semaphore

Single Shared-Resource-Access
Synchronization

» Danger: problem when the 3" task release
-> use mutex

Binary ™\ Vo
Semaphore™~___ L
(Initial value = 1)

Single Shared-Resource-Access
Synchronization

tAccessTask()

{
Acquire binary semaphore
Read or write to shared resource
Release binary semaphore

}

Recursive Shared-Resource-Access
Synchronization
tAccessTask calls -> Routine A -> Routine

B : need to access to the same shared
resource

Recursive >~
Mutex

~
~ -
i . 2

Figure 6.9 Recursive shared- resource-access
synchronization.

Recursive Shared-Resource-Access
Synchronization

tAccessTask() RoutineB()
{ {
Acquire mutex Acquire mutex
Access shared resource Access shared resource
Call RoutineA
Release mutex Release mutex
} }
RoutineA()
{

Acquire mutex

Access shared resource
Call RoutineB

Release mutex

-
Message Queues

Message Queues

A message queue Is a buffer-like object
through which tasks and ISRs send and
receive messages to communicate and
synchronize with data

It temporarily holds message from a
sender until the intended receiver Is ready
to read them.

Queue Control Memory
Block (System Pool or

Private Buffers)

Receiving Task

Sending Task Waiting List

Waiting List

Queue Name/ID

VL

Maximum
Message
Length

Queue Length

Tail Head Queuse

Element

Figure 7.1 A message queue, its associated parameters, and supporting data structures.

Message Queue Content

J

S Receiving task’s

memory area

Sending task’s
memory area

Message queue
memory area

Figure 7.3 Message copying and memory use for sending and receiving messages.

» For long message, use pointer

Typical Message Queue Use

Non-interlocked, one-way data
communication (loosely coupled)

Not synchronized
Does not require ACK

Figure 7.6 Non-interlocked, one-way data
communication.

