
Introduction to Real-Time 

Operating Systems



GPOS vs RTOS

General purpose operating systems

Real-time operating systems



GPOS vs RTOS: Similarities

Multitasking

Resource management

OS services to applications

Abstracting the hardware



Characteristics of RTOS

Reliability in embedded application

Scale up or down ability

Faster performance

Reduced memory requirement

Scheduling policies for real-time

Diskless

portability







Kernel Objects

Help developers creates applications for 

real-time embedded systems



Scheduler

Determine which task executes when

Schedulable entities-a kernel object that 

can compete for execution on a system-> 

process, task

Multitasking: many thread of execution 

appear to be running concurrently



Scheduler

Context: the state of CPU registers

Context switch

When a new task is created, TCB(task 

control block) is also created

TCB: system data structure





Scheduling Algorithms

Preemptive priority-based scheduling

Round-robin scheduling







Objects

Tasks

Semaphore: token-like objects for 

synchronization & mutual exclusion

Message queue: buffer-like data structures



Common Real-Time Design Problems

Concurrency

Activity synchronization

Data communication

Developers combine basic kernel objects



Tasks



Defining a Task

A task is an independent thread of 

execution that can compete with each 

other concurrent tasks for processor 

execution time

Developer decompose applications into 

multiple concurrent tasks to optimize the 

handling of inputs and outputs within set 

time constraints



Task States

Ready

Running

Blocked





Ready State

Most kernels support more than one task 

per priority level

Task-ready-list



Running State

 Can move to the blocked state

1. By making a call requesting an un 

available resource

2. By making a call requesting to wait for an 

event to occur

3. By making a call to delay



Blocked State

Without blocked state, lower priority tasks 

could not run!

CPU starvation occurs when higher priority 

tasks use all of the CPU execution time 

and lower priority tasks do not get to run.

A task can only move to the blocked state 

by making a blocking call, requesting that 

some blocking condition be met.



Typical Task Structures

Run-to-completion tasks

Endless-loop tasks



Run-to-Completion Tasks

Application-level initialization task

The application initialization task typically 

has a higher priority than the application 

tasks that it creates so that its initialization 

work is not preempted.



RunToCompletionTask()

{

initialize application

create ‘endless loop tasks’-lower priority

creates kernel objects

delete or suspend this task

}



Endless-Loop Tasks

One or more blocking calls within the body 

of the loop



EndlessLoopTask()

{

initialization code

Loop Forever

{

body of loop

make one or more blocking calls

}

}



Synchronization,Communication and 

Concurrency

Tasks synchronize and communicate by 

using intertask primitives (semaphores, 

message queues, signals, pipes)



Semaphores



Semaphore (Token)

A kernel object

One or more threads of execution can 

acquire or release for the purpose of 

synchronization or mutual exclusion



Semaphore

Semaphore is like a key that allows a task 

to carry out some operation or to access a 

resource. (e.g. a key or keys to the lab)



Semaphore Count

Semaphore (Token) count is initialized 

when created

A task acquire the semaphore: count is 

decremented

A task releases the semaphore: count is 

incremented

Token count = 0 : a requesting task blocks



Binary Semaphore

Value: 0 unavailable/empty

Value: 1 available/full



Counting Semaphore



Mutual Exclusion (Mutex) Semaphore

A special binary semaphore that supports 

ownership, recursive access, task deletion 

safety, priority inversion avoidance 

protocol.



Mutex Ownership

Ownership of a mutex is gained when a 
task first locks the mutex by acquiring it.

A task loses ownership of the mutex when 
it unlocks it by releasing it.

Recursive locking: when a task requiring 
exclusive access to a shared resource 
calls one or more routines that also require 
access to the same resource.



Mutex

Task Deletion Safety: While a task owns a 

mutex, the task cannot be deleted

Priority inversion avoidance



Priority Inversion



Priority Inversion

Priority inversion is a situation in which a 

low-priority task executes while a higher 

priority task wait on it due to resource 

contentions

Task interdependency



Priority Inversion Example



Unbounded Priority Inversion Example



Priority Inheritance Protocol

 R: resource, T: the Task requesting R

1. If R is in use, T is blocked

2. If R is free, R is allocated to T

3. When a task of a higher priority requests 

the same resource, T’s executing priority 

is raised to the requesting task’s priority

4. The task returns to its previous priority 

when it releases R



Priority Inheritance Protocol



Priority Inheritance Protocol

Priority inheritance is dynamic



Typical Semaphore Use

Wait-and-Signal Synchronization



Wait-and-Signal Synchronization

tWaitTask runs first

tWaitTask makes a request to acquire the 

semaphore but blocked

tSignalTask has a chance to run

tSignalTask releases the semaphore

tWaitTask unblocked and running



Wait-and-Signal Synchronization

tWaitTask()

{

…

Acquire binary semaphore

…

}

tSignalTask()

{

…

Release binary semaphore

…

}



Single Shared-Resource-Access 

Synchronization

Danger: problem when the 3rd task release 

-> use mutex



Single Shared-Resource-Access 

Synchronization

tAccessTask()

{

Acquire binary semaphore

Read or write to shared resource

Release binary semaphore

}



Recursive Shared-Resource-Access 

Synchronization

tAccessTask calls -> Routine A -> Routine 

B : need to access to the same shared 

resource



Recursive Shared-Resource-Access 

Synchronization
tAccessTask()

{

…

Acquire mutex

Access shared resource

Call RoutineA

Release mutex

…

}

RoutineA()

{

…

Acquire mutex

Access shared resource

Call RoutineB

Release mutex

…

}

RoutineB()

{

…

Acquire mutex

Access shared resource

Release mutex

…

}



Message Queues



Message Queues

A message queue is a buffer-like object 

through which tasks and ISRs send and 

receive messages to communicate and 

synchronize with data

It temporarily holds message from a 

sender until the intended receiver is ready 

to read them.





Message Queue Content

For long message, use pointer



Typical Message Queue Use
Non-interlocked, one-way data 

communication (loosely coupled)

Not synchronized

Does not require ACK


