Building
Embedded Linux System

Toolchains
Bootloader
Kernel

Root File System

Toolchain

&2
- AAS ZAMASHH HHOIL2) A8 TS MAGH| 9o 2R
2T L 2l0/222l, Hlollz2l RE2IE 28

Source code

Compilation

\ 2 4 _
. machine
: : Cross-compiling
Native toolchain .
toolchain
*86
\ 4
56 bi Execution
X Inary ARM binary machine

%86

ARM

Toolchain

2HQA
GCC: 3 Ut

Binutils : & =4 & =204, 80l 2l Ut& _é! =l 2| El
Glibc: A2A HWA S /st 2t0/EH2| ¥ et 2tolEd el

= Linux HE : 2lsA HE &~ A, Kernel headers
Binutils Kernel headers
C/C++ libraries GCC compiler

GDB debugger
(optional)

Cross-compilation toolchain

Toolchain

» Binutils is a set of tools to generate and manipulate binaries
for a given CPU architecture

» as, the assembler, that generates binary code from assembler

source code

» 1d, the linker
» ar, ranlib, to generate .a archives, used for libraries

» objdump, readelf, size, nm, strings, to inspect binaries.
Very useful analysis tools!

» strip, to strip parts of binaries that are just needed for
debugging (reducing their size).

» http://www.gnu.org/software/binutils/

» GPL license

Toolchain

» The C library and compiled
programs needs to interact with

the kernel

» Available system calls and their

numbers
» Constant definitions Kernel
» Data structures, etc. Kernel headers
» Therefore, compiling the C library Clilw

requires kernel headers, and many T
applications also require them. Application

» Available in <linux/...> and
<asm/...> and a few other
directories corresponding to the
ones visible in include/ in the
kernel sources

Toolchain

GNU Compiler Collection, the famous free
software compiler

Can compile C, C++, Ada, Fortran, Java,
Objective-C, Objective-C++4, and generate code
for a large number of CPU architectures,
including ARM, AVR, Blackfin, CRIS, FRV,
M32, MIPS, MN10300, PowerPC, SH, v850,
1386, x86__64, |A64, Xtensa, etc.

http://gcc.gnu.org/

Available under the GPL license, libraries under

the LGPL.

Toolchain

» The C library is an essential component of
a Linux system

» Interface between the applications and

the kernel
» Provides the well-known standard C API Kernel
to ease application development A

|
» Several C libraries are available: C lbrary

glibc, uClibc, musl, dietlibc, newlib, etc. T

Application

» The choice of the C library must be made
at the time of the cross-compiling
toolchain generation, as the GCC compiler
is compiled against a specific C library.

Toolchain & X

= /opt/toolchains CI2! E 2| E BHELH
= # mkdir /opt/toolchains
= Toolchain &= 22| ¢== EL[}.

= #tar jxvf arm-2014.05-29-arm-none-linux-gnueabi-i686-pc-
linux-gnu.tar.bz2 -C /opt/toolchains/

control@lab-pc2: Jopt/toolchains/arm-2014.05

control@lab-pc2:~$ cd fopt/toolchains

control@lab-pc2: fopt/toolchainss 1s

arm-2014.05

control@lab-pc2: fopt/toolchainss cd arm-2014.05

control@lab-pc2: /opt/toolchains/arm-2014.055% 1s
arm-none-linux-gnueabi bin 1i686-pc-linux-gnu 1ib 1libexec share
control@lab-pc2: /opt/toolchains/arm-2014.055%

Toolchain & X

ALY MSEH=8383H=2 He CIEE2|0ALE Alaig & QD]
?loH Al = .bashrc It 2 2] PATHEHE H =01l /opt/toolchains/arm-
2014.05/bin= =Jtoll 2= OF etL}.

dEA AL HS HE N Ll E 2l (/opt/toolchains/arm-2014.05/bin)

control@lab-pc2: fopt/toolchainsfarm-2014.05/bin

control@lab-pc2:~$ cd fopt/toolchainsfarm-2014.05

control@lab-pc2: fopt/toolchains/arm-2014.055% 1s
arm-none-linux-gnueabi bin 1686-pc-linux-gnu 1ib 1libexec share
control@lab-pc2: fopt/toolchains/farm-2014.0855 cd bin
control@lab-pc2: fopt/toolchainsfarm-2014.085/bins 1s
arm-none-linux-gnueabi-addr2zline arm-none-linux-gnueabi-gcc-ranlib
arm-none-linux-gnueabi-ar arm-none-linux-gnueabi-gcov
arm-none-linux-gnueabi-as arm-none-linux-gnueabi-gdb
arm-none-linux-gnueabi-c++ arm-none-linux-gnueabi-gprof
arm-none-linux-gnueabi-c++filt arm-none-linux-gnueabi-1d
arm-none-linux-gnueabi-cpp arm-none-linux-gnueabi-nm
arm-none-linux-gnueabi-cs arm-none-linux-gnueabi-objcopy
arm-none-linux-gnueabi-cs-daemon arm-none-linux-gnueabi-objdump
arm-none-linux-gnueabi-elfedit arm-none-linux-gnueabi-ranlib
arm-none-linux-gnueabi-g++ arm-none-linux-gnueabi-readelf
arm-none-linux-gnueabi-gcc arm-none-linux-gnueabi-size
arm-none-linux-gnueabi-gcc-4.8.3 arm-none-linux-gnueabi-strings
arm-none-linux-gnueabi-gcc-ar arm-none-linux-gnueabi-strip

control@lab-pc2: fopt/toolchains/arm-2014.05/bins

arm-none-linux-gnueabi-gcc-nm cache "

Toolchain & X

= bashrc It =&
= #vi .bashrc

i,

control@lab-pc2: ~

enable programmable completion features (you don't need to enable
this, if it's already enabled in /etc/bash.bashrc and /etc/profile
sources Jjetc/bash.bashrc).
if [-f Jetc/bash_completion] && ! shopt -oq posix; then
. [/etc/bash_completion
i
Cross Compiler
export CROSS_COMPILE=arm-none-linux-gnueabi-
export PATH=/opt/toolchains/arm-2014.05/bin:SPATH
export ARCH=arm

= source &= Eolf HEE .bashrc= &l &=
= # source .bashrc

= X86H UM AtZ20t= 2lsA gect LHE &2 M-
DEIJFARMECLZ MAHEICt= A0|C 2+t I 2
= &40t HIAE St
« HAE T2 3 XY

D_IO

control@lab-pc2: ~/work/hello

lcontrol@lab-pc2:~/work/hello$ cat hello.c
I#tinclude <stdio.h>

void main(void)

{

i
contrnl@lah—pcz:~fwnrkfhellu$

printf("Hello\n");

Toolchain Test

= HUL
= #gcc —o hello hello.c
= # arm-none-linux-gnueabi-gcc —o hello-arm hello.c

= 22U = O 2 =0l(file 3E AIE)

control@lab-pc2: ~fwork/hello

control@lab-pc2:~/work/hello$

control@lab-pc2:~/work/hello$ 1s

hello hello-arm hello.c Makefile Makefile~

control@lab-pc2:~/work/hello$ file hello

hello: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked
(uses shared libs), for GNU/Linux 2.6.24, BuildID[shal]=0x988f2bde34210d29f567F

aaf8deb83c14ed27583, not stripped

control@lab-pc2:~/work/hello$ file hello-arm

hello-arm: ELF 32-bit LSB executable, ARM, version 1 (SYSV), dynamically linked
(uses shared libs), for GNU/Linux 2.6.16, not stripped u

control@lab-pc2:~/work/hello$ |

TARGETS £ S 2|8

MinicomO|&t?
= =98 Fet 8RS HOIE= AL YA &HS
L EHAE © 2 gerial portE S¢ot HOIE 22 18 0|=
= LinuxOll A= £ EHE © 2 minicom AFHS
= Windows 0l N = HyperTerminal It S AtSt ZZ2]S AIEZ
MinicomO| &+7?
= SAEQIHAS HA
S0, B3O §HES SAEUNHAN = 2= AN ol =CH.
Minicom 22] 2= AIZ5lD)|

C,>|6H [&{X_I N =
= minicom EZ2)82 A2
E HF0| L

St 1T

—

A M= oll =L,
| HAZ T /D 20| EF2e Al2|E &
Minicom &
- PEZHO YY OIEHE

- AHCIC 2lsAc Y

= minicom & X|
= # apt-get install minicom
= Serial port &2l

i el R L R e N N e N Wy

new full-speed USB device number 5 using uhci_hcd

New USB device found, idVendor=067b, idProduct=23@3

New USB device strings: Mfr=1, Product=2, SerialNumber=0
Product: USB-Serial Controller D

Manufacturer: Prolific Technology Inc.

usbcore: registered new interface driver usbserial
usbcore: registered new interface driver usbserial_generic

USB Serial support registered for generic

usbcore: registered new interface driver plz3e3

= # dmesg
290.719202] usb 2-2.2:
290.934936] usb 2-2.2:
290.934946] usb 2-2.2:
290.934951] usb 2-2.2:
290.934955] usb 2-2.2:
291.091973] e
291.092295]
291.092606] usbserial:
291.095579]
291.095970] usbserial:
291.096290]

291.115651]

USB Serial support registered for plz3e3

pl23e3 2-2.2:1.0: pl2303 converter detected

usb 2-2.2:

pl2303 converter now attached to ttyusge

rnntﬁlab-iczthnmefcontrol# ls /dev/ttyUsBe
dev/ttyUSBO

root@lab-pc2:/home/control# |

= minicom &3 &4 T2 Al¢

= # minicom —S

root@lab-pc2: /homefcontrol

$=-=== [configuration]------ +
| Filenames and paths

| File transfer protocols
VScral fort st |

I
|
| Modem and dialing |
| Screen and keyboard |
| Save setup as dfl |
| Save setup as.. |
| Exit |
| Exit from Minicom |

Minicom & &

COM Port &l EH

= Serial port setup &=
Ad HO[=0] H&E=

1> M0

A - Serial Device : /dev/ttyUsBe |
B - Lockfile Location : Jvar/lock |
C - Callin Program |
D - Callout Program : |
E - Bps/Par/Bits : 115208 B8N1 |
F - Hardware Flow Control : Yes |
G - Software Flow Control : No |

|

|

Change which setting? |}

| Screen and keyboard |
| Save setup as dfl |
| Save setup as.. |
| Exit |
| Exit from Minicom |

Minicom & &

/\—I I—I DI— I_| NG

= Save setup as dflIE HEiet = EnterE = &&= gt A
II‘oI-EI_
& = ExitE =2 248 S§2 = L2 (3—?—62{'

HC=2 3¢ e

&ICE)

L HA 3

@S @ root@lab-pc2: /home/control

R [configuration]------
| Filenames and paths

| File transfer protocols

| serial port setup

| Modem and dialing

| screen and keyboard

] Save setup as dfl

I

I

I

Save setup as..
Exit
Exit from Minicom

2

ID:I O] minicom2 £

=40

TFTP&?

= TFTP(Trivial File Transfer Protocol)&t?
= FTPEL 2HHGHAIBH J|S0] A= et WER A HE2|AH0E 0]
Ch. Ol X2 AIEX IS0l 20t CIEECE B =X &0+
T &= 0 AF=EE 0L
EZHUW A kernel 0|0l XIE HostHl A Targete 2 O|HYIEZE
Sot(H Lt=2=% otJ| 2ol At=etL.

1

=
S
=
=

TFTP-Server & X| 6} |

D2 S AX

= # apt-get install tftp tftpd xinetd

= 0|0l 2XIE] U= E2R2 et

root@lab-pc2: ~

root@lab-pc2:~# apt-get install tftp tftpd xinetd
Reading package lists... Done

Building dependency tree

Reading state information... Done |
xinetd is already the newest version.

tftp is already the newest version.

tftpd is already the newest version.

® upgraded, ® newly installed, ® to remove and 235 not upgraded.
root@lab-pc2:~#

TFTP-Server

=)

Y &

s

letc/xinet.d/tftp I} & A

= # vi /etc/xinetd.d/tftp

service tftp

{

protocol = udp
socket_type = dgram
wait = yes

user = root

server = /usr/sbin/in.tftpd
server_args = -s /tftpboot
disable = no

per_source = 11

cps = 100 2

flags = IPv4

}

CC
a-

| —
—

A
L

X
o

TFTP-Server &3& &

tftpboot Cl & E2| M A

= tftp)t A Z = Cl 2V E 2| 0| Lt. /tftpbootct= Ll &2l)t &
mkdirE 2t=0 =Cl.

= # mkdir /tftpboot

thp)t &M= Us BE= 2@t

= # /etc/init.d/xinetd restart

—
u EEEZ

= # service xinetd restart

= # netstat -a | grep tftp

root@lab-pc2:~# netstat -a | grep tftp
udp 5] 0 *:tftp * 1k

root@lab-pc2:~# |

TFTP

= TFTP A&

control@lab-pc2:~5 cd /tftpboot
control@lab-pc2:/tftpboots cat test.txt
test

control@lab-pc2: /tftpboots cd
control@lab-pc2:~$ tftp localhost
tftp> get test.txt

Received 6 bytes in 0.0 seconds
tftp> quit

control@lab-pc2:~5 cat test.txt
test

control@lab-pc2:~$ |}

NFS

= NFS(Network File System)
o 34._LE_| A}EX}D} O_ID:I | B-I._LE_l O“ OIE H|_

oIS bRl XAl HE
Ol QL= 2HE AAED, HEGIHL SRotE= ol == 2et
0l E/A u+ SEHO HIZHLIS

= NFS A &X

= # apt-get install nfs-kernel-server

= NFS AMtH &%
= LOC|AEZ| A

 # mkdir /nfsroot
= /etc/exports It =&

= T O

* #vi /etc/exports

Infsroot *(rw,sync,no_root_squash,no_subtree_check)

NFS

= NFS Al X
= NFS Ul MAIE
» # /etc/init.d/nfs-kernel-server restart
e &&=
» # service nfs-kernel-server restart
* # netstat -a | grep nfs

= NFS HIAE

control@lab-pc2:~$ mkdir tmp

control@lab-pc2:~% sudo mount -t nfs localhost:/nfsroot ./tmp
control@lab-pc2:~% cd tmp

control@lab-pc2:~/tmps 1s

ButtonTest fpga_fnd driver.ko fpga_test_push_switch
CanButtonTest fpga_led _driver.ko SocketCANexample
CanTest fpga_push_switch_driver.ko StopwatchTest
epit_driver.ko fpga_test_fnd Test

epit_test fpga_test_led

control@lab-pc2:~/tmps cd ..

control@lab-pc2:~$ sudo umount localhost:/nfsroot
control@lab-pc2:~% cd tmp

control@lab-pc2:~/tmps 1s

control@lab-pc2:~/tmpS$ cd ..

control@lab-pc2:~$ |}

Bootloader

Bootloader Overview

= Target Board Initialization
= Memory setting
= CPU clock setting
= GPIO setting
= Serial port setting
= MAC address and Ethernet port setting

= Kernel Booting
= |mage download from host by tftp
= Copy image from Flash to ram or from ram to flash.
= Jump to kernel
= Command line interface

Bootloader2t PC BIOSS2| H| 1l

Kernel v
F L A S H { 11111 presse d)
Rootdisk

(compresse d)

| FLASH -

| RAM
RAM -

Bootloaderl =5

Bootloader SVideo Description Architectures
Ay e x86 | ARM | PowerPC | MIPS |SuperH | m68k
LILO No | The main disk bootloader for Linux* X
GRUB No | GNU's successor to LILO X
Loadlin No | Loads Linux from DOS X
Etherboot No | Loader to boot systems through Ethernet cards X
CoreBoot No | Linux-basedBIOS (LinuxBIOS) replacement X
blob No | Loader from the LART hardware project X
PMON Yes | Loader used in Agenda VR3 X
sh-boot No | Main loader of the LinuxSH project X
U-Boot Yes | Universal loader based on PPCBoot and ARMBoot X X X
RedBoot Yes | eCos-based loader X X X X X X

Bootloaderl =5

= Xx86
= X860 A= Otchel 2JtAl E+2I0| =2 At= =Lt : LILO and GRUB
= LILO: http://brun.dyndns.org/pub/linux/lilo/
= GRUB: http://www.gnu.org/software/grub/
o 2| 2| bootloader: Rolo, EtherBoot, LinuxBIOS
= Arm architecture
= U-Boot ARM bootloader2 EZ=0| &It JULCH.
« Armboot=Z & X &l ppcboot= u-boot= &l st
 http://armboot.sourceforge.net/
= BLOB
« LART hardware projectOil Al 2~ I = bootloader
e Ct2st ARM-based system0il £ &
 http://www.lart.tudelft.nl/lartware/blob

Booting Sequence

1 Reset Z LHE ROM 2& A &Y
2 Operating Mode 0 [t2t £ E CIHO| A & EH
@ BL112t 22 xD|3 ZEE WE RAM2Z S A}

@ BL10Il Al U-Boot = Al
File System o U-Boot o

=
T

(5) U-Boot &l Al =t

Kernel
(zimage) Kernel
U-Boot (zlmage)

SD/eMMC

Internal RAM

© s

Internal ROM

Kernel

Kernel Overview

= Kernel2| <Al
= UNIX: 1969 Thompson & Ritchie AT&T Bell Labs.
= BSD: 1978 Berkeley Software Distribution.
= Commercial Vendors: Sun, HP, IBM, SGl, DEC.
= GNU: 1984 Richard Stallman, FSF.
= POSIX: 1986 IEEE Portable Operating System unlX.
= Minix: 1987 Andy Tannenbaum.
= SVR4: 1989 AT&T and Sun.
= Linux: 1991 Linus Torvalds Intel 386 (i3806).
= Open Source: GPL.

Kernel Overview

= Linux2 £3&

= UNIX-like operating system.

= =S4
« Preemptive multitasking.
 Virtual memory (protected memory, paging).
« Shared libraries.
« Demand loading, dynamic kernel modules.
« Shared copy-on-write executables.
« TCP/IP networking.
« SMP support.
* Open source.

Kernel Overview

= kernelO| &t7?
= AKA: executive, system monitor.
= hardware(il & 2ot= A= M Oiot) S ekl
= HAMHEQI HE S Aol A& Sl
* Processes, files, devices etc.

= Schedules / allocates system resources:
« Memory, CPU, disk, descriptors, etc.

= Security 2t protection =24,
= service (system calls)E ?let AIE A QAU Uist S E.

Kernel Overview

= Kernel Core

Applications

System Libraries (libc) .

System Call Interface

/O Related | ~ Process Related
File Systems Scheduler

Networking Memory Management
Device Drivers | IPC

Architecture—Dependent Code

Hardware

Kernel Overview

Linux Kerne
SAM MM JFE D= 0|) SHAIE

r§
~
ol
10
0
0

T MAS 22|, CPU AHEYH, &= M
HR22, U, FHEXIQ &2 AlAE &
Monolithic KernelO| X| B} Micro Kernel

« Monolithic kernel: 6tLI 2] KerneIOﬂ = =
C'Ell J—DFOH st JIOOI "XH st o= HAIOZ Kern
ol 1!

Micro kernel

« ZRetIIsS2 a2 A B2 LA A, AHE 22le = U
= =22 3J], ot=R0 SE0 Wt Jls2 & Jls XH—T“S |

Z0]. 82 MHIAE AtE26t= BEUHA] Hel HIAIA &1t
Context SwitchingO| & 2. =2 A& AIS.

Linux Kernel

Process Management

= otLtSl 2)2 ot Ol &L 2 AA S

= Kernel2 ol T2 N AJ AIAE XIS 2dliotl, U2 XIS
Aole & AT E 22

= TZNAS MM AN HSt MBHEQI LIE S 228t

ool

Memory Management
= ANAEINMN RSEHeE ZZ2HMA=E T2 HACS SSX0! {22

= Linuxz= S2IHZ220 HEELZ H0IeHE JISote A= &

Linux Kernel

= File System Management
= Linux = B8 MMz Cheer LIS Al A
= Linux Ol 2 &Xl= 2 £
= CDFS, FAT, JFFS, YAFFS, FAT16/32, EXT3/4, NTFSSs= Al &
= Device Management

= BootloaderOil Al =J|atEl 0|= 2= CIHI0|A = Kernel 2] 22| 2
gt =Cl.

» S22 U2) A ClO0|AE 0| =200 ot &R
oH OFBF Ml JF Jt=otLCl.

= AtEZ0lAA ot &KXl E20IHA et =i =25 2402 L
7 Hl =l C.

= Network Management
= Kernel 2 J|J|2 QI2AIAEI0 AANQ HERIDE SollA =

M = UAESE ol

= |Pv4, IPv6, Ethernet, ATM, CDMAS 0| Al & =l Lt

ﬂJIO
|
0

\J
2\
D
=
-
@

Linux Kernel

Process-1 Process-2 Process-3 fee s s mas s eaae s Process-n |
User Space
I | I I +
System Call Interface +
File Manager - > Process Manager
£t s Task manager
Medoe. L le— Memory - - SE?QE.SIIIE
- Manager
I e
I buffer cache |g---f------ i ' kemel
I Space
Device Manager : . - Network Manager
Block Char |d---=cccccaaaa. - L
Ipwd, lpvb
Console, Keyboard
SCSl, CD-ROM - > Ethernet, ATM...
PClbus..
Device Interface z
| I | | Device Space
Device-1 Device=-2 Device-3 bea sEs sss mes s mamam s Device=-n I

Kernel Source Tree

= Kernel source
= www.kernel.org
= Kernel2l 222 CE2 A HE K UL
= Kernel Directories
kernel] | i[f lib | mm
| Documentation Je_ ‘_\ / scripts_| { block |
Jusr/src/linux | cdrom
E/ > driver
r k4 ':;:: \
" fs [init] [include] net | . \ .
' B2) NG
| asm-alpha | appletalk {prp
->{asm-arm_] decnet bUs
- ethernet Y scsi |
msdog ~>_asm-i386 | ipv4
unix
$ isofs | > net sunrpc -
Minix a' SCSi X25
: —a| video

Kernel Source Tree

= arch/

= CPU dependent (arch/i386, arch/alpha, arch/arm...)

= arch/arm/boot/
« Boot Strap

= arch/arm/kernel/
« Hardware dependent kernel management routines
* Trap, Interrupt processing routines
« Context Switching routines
« Device configuration, initialization

= arch/arm/mm/
« Hardware dependent memory management routines

= jnit/
= Hardware independent kernel initialization (start_kernel)
« Task O (init_task or task[0]) creation
 Demon process creation - Task 1, 2, 3 and so on

Kernel Source Tree

= Kkernel/
= Central section of the kernel
= Hardware independent kernel management routines
» fork, exit
« Scheduler
 Signal handling
« Time management
= mm/
= Hardware independent memory management routines
 Virtual Memory Management

« Paging / Swapping

Kernel Source Tree

= fs/
= Virtual file system Management
= open, read — file system related system call routines

= Subdirectories for special file systems (ext2, fat, ...)

= ipc/
= |PC between processes
« Semaphores
« Shared memory

 Message queues

Kernel Source Tree

= drivers/
= Device driver routines
= drivers/block/ : Block device driver
= drivers/char/ : Character device driver
= drivers/net : Network device driver
= drivers/pci/ : PCI bus control
= drivers/sound/ : sound card device driver
= drivers/cdrom/ : CD-ROM device driver
= drivers/scsi/ : SCSI device driver
= net/
= Network protocols : TCP/IP, ARP and so on

= Socket interface

Kernel Source Tree

include/
= Header files for the kernel
« Hardware independent : include/linux/
« Hardware dependent : include/asm-***/
modules/
= Kernel module routines
= insmod(modprobe), rmmod : dynamic load and removal
lib/
= Kernel library routines
Doc/

= Kernel document

Kernel Image Writing

HOST PC

TFTP

TFTP :

tftp 10800000 ulmage

- DRAM

0x10800000

0x10000000

SD/MMC

Copy :

mmc dev 0

mmc write 10800000 800 7000

0x800

—— 0x400
Inner RAM

Inner ROM

Root File System

for Embedded Linux

Minimum Components

init: The program that starts everything off, usually by
running a series of scripts.

shell: Needed to give you a command prompt but, more
Importantly, to run the shell scripts called by init and
other programs.

daemons: Various server programs, started by init.

libraries: Usually, the programs mentioned so far are
linked with shared libraries which must be present in the
root file system.

Configuration files: The configuration for init and other
daemons is stored in a series of ASCI| text files, usually
in the /etc directory.

Minimum Components

= Device nodes: The special files that give access to
various device drivers.

= /proc and /sys: Two pseudo file systems that represent
kernel data structures as a hierarchy of directories and
files. Many programs and library functions read these
files.

= kernel modules: If you have configured some parts of

your kernel to be modules, they will be here, usually In
/lib/modules/[kernel version].

Directory Layout

/bin: programs essential for all users
/dev: device nodes and other special files
/etc: system configuration

/lib: essential shared libraries, for example, those that make up the
C library

/proc: the proc files ystem

/sbin: programs essential to the system administrator
/sys: the sysfs file system

/tmp: a place to put temporary or volatile files

/usr: as a minimum, this should contain the directories /usr/bin,
/usr/lib and /usr/sbin, which contain additional programs, libraries,
and system administrator utilities

/var: a hierarchy of files and directories that may be modified at
runtime, for example, log messages, some of which must be
retained after boot

Programs for the root file system

= The init program

= You have seen in the previous chapter that init is the first
program to be run and so has PID 1. It runs as the root user and
so has maximum access to system resources. Usually, it runs
shell scripts which start daemons: a daemon is a program that
runs in the background with no connection to a terminal, in other
places it would be called a server program.

= Shell

= We need a shell to run scripts and to give us a command-line
prompt so that we can interact with the system. An interactive
shell is probably not necessary in a production device, but it is
useful for development, debugging, and maintenance.

Programs for the root file system

= Utilities

= The shell is just a way of launching other programs and a shell
script is little more than a list of programs to run, with some flow
control and a means of passing information between programs.
To make a shell useful, you need the utility programs that the
Unix command-line is based on. Even for a basic root filesystem,
there are approximately 50 utilities, which presents two problems.
Firstly, tracking down the source code for each and cross
compiling it would be quite a big job. Secondly, the resulting
collection of programs would take up several tens of megabytes,
which was a real problem in the early days of embedded Linux
when a few megabytes was all you had. To solve this problem,
BusyBox was born.

= BusyBox

Files for the root file system

= Libraries for the root file system

= Device nodes

$ sudo mknod -m 666 dev/nullc 1 3
$ sudo mknod -m 600 dev/console ¢ 5 1

$Is -l dev
total O
Crw------- 1 root root 5, 1 Oct 28 11:37 console

crw-rw-rw- 1 root root 1, 3 Oct 28 11:37 null

Build Systems

= The idea of a build system is to automate all the steps. A
build system should be able to build, from upstream
source code, some or all of the following:

The toolchain

The bootloader

The kernel

The root file system

Build Systems

Buildroot: An easy-to-use system using GNU make and Kconfig
(http://buildroot.org)

EmbToolkit: A simple system for generating root filesystems; the only one at
the time of writing that supports LLVM/Clang out of the box
(https://www.embtoolkit.org)

OpenEmbedded: A powerful system which is also a core component of the
Yocto Project and others (http://openembedded.org)

OpenWrt: A build tool oriented towards building firmware for wireless
routers (https://openwrt.org)

PTXdist: An open source build system sponsored by Pengutronix
(http://www.pengutronix.de/software/ptxdist/index_en.html)

Tizen: A comprehensive system, with emphasis on mobile, media, and in-
vehicle devices (https://www.tizen.org)

The Yocto Project: This extends the OpenEmbedded core with
configuration, layers, tools, and documentation: probably the most
popular system (http://www.yoctoproject.org)

SD Booting

DRAM
Bootloader

Micro SD Card

0x10000000
SD/MMC

File System

Kernel

ulmage A———__ (.

Bootloader

Booloader 0x400
OByt ——= BL1 Inner RAM

iRom Code Inner ROM

bll Copy

NFS Booting

Host Target

RAM RAM

Flash memory

ttp request_l kernel
[bootm | /|
—

~—

ST <

Host Hard Disk
(File System)

