Cortex-M4 Processor Overview

with ARM Processors and Architectures

Introduction

ARM

ARM was developed at Acorn Computer Limited of Cambridge, UK (between
1983 & 1985)

RISC concept introduced in 1980 at Stanford and Berkeley

ARM founded in November 1990
Advanced RISC Machines

Best known for its range of RISC processor cores designs

Other products — fabric IP, software tools, models, cell libraries - to help partners
develop and ship ARM-based SoCs

ARM does not manufacture silicon

Licensed to partners to develop and fabricate new micro-controllers
Soft-core

ARM Architecture

Based upon RISC Architecture with enhancements to meet requirements of
embedded applications

A large uniform register file

Load-store architecture
@ LDR, STR : "Load register” and “Store register”

e Examples:
e LDR R1, [RO] ; load into R1 the content of the memory

location whose address is in RO
o STR R1, [RO] ; store the contents of R1 into the memory
location whose address is in RO
Fixed length instructions
32-bit processor (v1-v7), 64-bit processor (v8)
Good speed/power
High code density

Enhancement to Basic RISC

Control over both ALU and shifter for every data processing operations
ADD 2,13, r4, LSL#2 ;r2=r3+ (r4 * 4) Operand Operand

1 2
Shifter

Auto-increment and auto-decrement addressing modes
To optimize program loops
Load/Store multiple data instructions
To maximize data throughput
LDM, STM j
Conditional execution of instructions
To maximize execution throughput
B Example: ADDEQTO, r1, r2

Instruction will only be executed when the zero
flag is set to 1

Result

Embedded Processors

Classic
ARM Processors

Embedded
Cortex Processors

Application Processors

ARM Processors (SOrteEX Processors

ARM11MP

ARM1176)Z(F)-S
ARM926E]-S

oy

ARM Processor Family

Cortex-A73 Application
rocessors
System capability & ’ . P ith MMU
performance ortex-A72 (Wlt ’
Cortex-A57 support Linux,
, Cortex-A53 MS mobile OS)
Cortex-Al5 . ortex-A35
Cortex-Al7 Cortex-A32
Cortex-A9 Cortex-Al2
Cortex-A7 / \
Cortex-A8 Cortex-R8
u Real Time
| Cortex-A5 U processors
- J Cortex-R7 \ /
ARMI ™ C %J R5
. ortex-
ARM926TM series /_ \
Cortex-R4 u Microcontrollers
u Cortex-M7 and deeply
u Cortex-M4 embedded
ARM920T™, _ J
ARM940T™ ARM946™ Cortex-M3 u
ARM966™ - CHex-MU Cortex-M0+
Cortex-MI|
ARM7™ series (FPGA)
[Classic ARM Processors J ARM Cortex Processors J

Summary of Processor Characteristics

Application processors

Real-time processors

Microcontroller

processors

Design High clock frequency, High clock frequency, Short pipeline,
Long pipeline, Long to medium ultra low power,
High performance, pipeline length, Deterministic (low
Multimedia support (NEON Deterministic (low interrupt latency)
instruction set extension) interrupt latency)
System Memory Management Unit Memory Protection Memory Protection Unit
features (MMU), Unit (MPU), cache (MPU), Nested Vectored
cache memory, memory, Tightly Interrupt Controller
ARM TrustZone® security Coupled Memory (NVIC), Wakeup Interrupt
extension (TCM™) Controller (WIC)
Targeted Mobile computing, smart Industrial Microcontrollers,
markets phones, microcontrollers, Deeply embedded

energy-efficient servers,
high-end microprocessors

automotives,
Hard disk controllers,
Baseband modem

systems (e.g. sensors,
MEMS, mixed signal IC),
Internet of Things (loT)

Pipeline

* Pipelining allows hardware resources to be fully utilized
* One 32-bit instruction or two 16-bit instructions can be fetched.

Clock

|

Instruction Instruction Instruction

Instruction i Fetch Decode Execution

Instruction Instruction Instruction

Instruction i + 1 Fetch Decode Execution

.. Instruction Instruction Instruction
Instruction i + 2

Fetch Decode Execution

Pipeline of 32-bit instructions

1. Fetch
instruction at
PC address
3. Execute 2. Decode
the the
instruction instruction

|

ARM Cortex Advanced Processors

Architectural innovation, compatibility i ey
across diverse application spectrum Cortex

Low-Power Leadership from ARM*

= ARM Cortex-A family:

= Applications processors for feature-
rich OS and 3™ party applications

= ARM Cortex-R family:

= Embedded processors for real-time
signal processing, control applications

= ARM Cortex-M family:

= Microcontroller-oriented processors
for MCU, ASSP, and SoC applications

. Cortex-M0
12k gates...

Application Examples

Cortex-A '

servers set-top boxes netbooks mobile applications

Cortex-R

digital cameras mobile baseband

?
’

appliances motors

ARM Architecture Overview

Architecture History

V4

version

ARM102xE XScale™

ARMv/

ARMv6

ARMI1136JF-S™

ARMI1026EJ-S™

ARMI1176JZF-S™

ARMI1156T2F-S™

ARMv5 .O' . O
. ARM9X6E___ARMS
ARM7TDMI-s™ StrongARM ARM92xT
SCI00™ ARM720T™
— : : : | | —
1994 1996 1998 2000 2002 2004 2008me

Development of the ARM Architecture

v4 v5 (¢} v/

Halfword and ! Improved : SIMD Instructions Thumb-2
signed halfword : interworking : Multi-processing
/ byte support CLZ _ _ V6 M.emory architecture ! Architecture Profiles

: Saturated arithmetic : Unaligned data support : o
Systemmode i DSP MAC i 7-A - Applications

: instructions : Extensions: : 7-R - Real-time
Thumb i Thumb-2 (6T2) : 7-M - Microcontroller
instruction set Extensions: : TrustZone® (6Z) :

(vAT) : Jazelle (5TEJ) i Multicore (6K)
: Thumb only (6-M)

= Note that implementations of the same architecture can be different
= Cortex-A8 - architecture v7-A, with a 13-stage pipeline
= Cortex-A9 - architecture v7-A, with an 8-stage pipeline

Architecture ARMv7 profiles

Application profile (ARMv7-A)
Memory management support (MMU)
Highest performance at low power
Influenced by multi-tasking OS system requirements
TrustZone and Jazelle-RCT for a safe, extensible system
e.g. Cortex-A5, Cortex-A9

Real-time profile (ARMv7-R)
Protected memory (MPU)
Low latency and predictability ‘real-time’ needs
Evolutionary path for traditional embedded business
e.g. Cortex-R4

Microcontroller profile (ARMv7-M, ARMv7E-M, ARMv6-M)
Lowest gate count entry point
Deterministic and predictable behavior a key priority
Deeply embedded use
e.g. Cortex-M3

Which architecture is my processor?

Classic Application Embedded
ARM Processors (Gortex Processors Cortex Processors
Cortex-Al
(Cortex-AY

(9a

ARM11MP IEEOTTEX=AB

ARM926 ARM176]Z INGEOrTEX=AY,

SC300 SC000

Cortex-M3 B Cortex-M1

Cortex-M0

ARMvZM/ME ARMv6M

Thumb
NVIC
e

SC100 ARM968 ARM1136| EGEOTTEX=AS

ARM7TDMI ARM946 ARM1156T2 I Cortex-R4
ARMv4T ARMV5T) ARMvé6 ARMvV7A/R
ARM 32-Bit ISA

Thumb 16-Bit ISA

Thumb-2 Mixed ISA
VFPy3

VEPv2 VFPy2

Jazelle Jazelle Jazelle

TrustZone TrustZone

SIMD SIMD

NEON

Virtualization

Cotex-M Processor Family

Cortex-MO A very small processor (starting from 12K gates) for low cost, ultra low power
microcontrollers and deeply embedded applications

Cortex-MO+ The most energy-efficient processor for small embedded system. Similar size and
programmer’s model to the Cortex-MO processor, but with additional features like
single cycle I/O interface and vector table relocations

Cortex-M1 A small processor design optimized for FPGA designs and provides Tightly Coupled

Memory (TCM) implementation using memory blocks on the FPGAs. Same
instruction set as the Cortex-MO

Cortex-M3 A small but powerful embedded processor for low-power microcontrollers that has
a rich instruction set to enable it to handle complex tasks quicker. It has a
hardware divider and Multiply-Accumulate (MAC) instructions. In addition, it also
has comprehensive debug and trace features to enable software developers to
develop their applications quicker

Cortex-M4 It provides all the features on the Cortex-M3, with additional instructions target at
Digital Signal Processing (DSP) tasks, such as Single Instruction Multiple Data
(SIMD) and faster single cycle MAC operations. In addition, it also have an optional
single precision floating point unit that support IEEE 754 floating point standard

Cortex-M7 High-performance processor for high-end microcontrollers and processing
intensive applications. It has all the ISA features available in Cortex-M4, with
additional support for double-precision floating point, as well as additional

memory features like cache and Tightly Coupled Memory (TCM)

ARMv7-M Architecture

ARMv7-M Profile Overview

v7-M Cores are designed to support the microcontroller market
Simpler to program — entire application can be programmed in C
Fewer features needed than in application processors

Register and ISA changes from other ARM cores
No ARM instruction set support
Only one set of registers
XPSR has different bits than CPSR

Different modes and exception models
Only two modes: Thread mode and Handler mode
Vector table is addresses, not instructions
Exceptions automatically save state (r0-r3, r12, Ir, XPSR, pc) on the stack

Different system control/memory layout
Cores have a fixed memory map
No coprocessor 15 — controlled through memory mapped control registers

Cortex-M3

Cortex"‘-M3

ARMv7-M Architecture
= Thumb-2 only
Fully programmable in C
3-stage pipeline
Optional MPU
AHB-Lite bus interface
Fixed memory map
1-240 interrupts
= Configurable priority levels
= Non-Maskable Interrupt support
= Debug and Sleep control
Serial wire or JTAG debug
Optional ETM

Cortex-MO

Cortex™-M0

Wiake Up Interrupt Controller Interface

Interface Access Port

ARMvV6-M Architecture

» 16-bit Thumb-2 with system control
instructions

Fully programmable in C
3-stage pipeline
AHB-Lite bus interface
Fixed memory map
1-32 interrupts

= Configurable priority levels

= Non-Maskable Interrupt support
Low power support

Core configured with or without
debug

= Variable number of watchpoints and
breakpoints

Thumb-2 Technology

* Thumb-2 ISA was introduced in ARMv7 architecture

= QOriginal16-bit Thumb instructions maintain full compatibility with existing code

+
= New 16-bit Thumb instructions for improved program flow

+

= New 32-bit Thumb instructions for improved performance and code size.
One 32-bit instruction replaces multiple 16-bit opcodes.
32-bit instructions are handled in the same mode ~ no interworking required

Instruction flow

ARM | 32-bit l 32-bit I 32-bit | 32-bi; | 32-bit |

Thumb [16-bit | 16-bit | 16-bit 16-bit | 16-bit 16-6it | 16-bit 10-bit | 16-bit | 16-bit]

Thumb

decoder

Thumb-2 | @6] 32-bit 16-bit | 16-bit | 16-bit 32-bit | 16bit |

Programmer’s Model

Processor Register Set

RO Registers R0-R12

R1

R2 General-purpose registers

R3

R4 R13 is the stack pointer (SP) - 2 banked versions

R5

= R14 is the link register (LR)

R8

RO R15 is the program counter (PC)

R10

ii: PSR (Program Status Register)
R13 (SP) Not explicitly accessible
R14 (LR) .
S5 o Saved to the stack on an exception

Subsets available as APSR, IPSR, and EPSR

PSR

Special Purpose Registers

Program Status Register
Described in upcoming slides

Special Purpose Mask Registers : PRIMASK, FAULTMASK, BASEPRI
Used to modify exception priorities

To set/clear PRIMASK and FAULTMASK, use CPS instructions
CPSIEi / CPSIDi / CPSIEf / CPSIDf

Special Purpose CONTROL Register

2 bits
Bit O defines Thread mode privilege
Bit 1 defines Thread mode stack

The Special Purpose Registers are not memory-mapped

Accessed via specific instructions
MRS — Move special purpose register to general-purpose register
MSR — Move general-purpose register to special purpose register

XPSR - Program Status Register

31 28 27 26 2524 23 20 19 16 15 10 9 8 0

IN zcCcvVolT T Wwwm I IT/ICI IISR Number |
[| [| [| [| 1 . 2 . 1 1 1 1 1 [| [| [| [| [| [| [| [|
| l | |

XPSR stored on stack during exceptions
Condition code flags

N = Negative result from ALU

Z = Zero result from ALU

C = ALU operation carry out

V = ALU operation overflow

Q = Saturated math overflow
IT/ICI bits

Contain IF-THEN base condition code or Interrupt Continue information
ISR Number

Stacked xPSR shows which exception was pre-empted
T=1

System Timer — SysTick

Flexible system timer
24-bit self-reloading down counter
Reload on count ==
Optionally cause SysTick interrupt on count ==
Reload register
Calibration value

Clock source is CPU clock or optional external timing reference
Software selectable if provided

Reference pulse widths High/Low must exceed processor clock period
Counted by sampling on processor clock

Calibration Register provides value required for 10ms interval
STCALIB inputs tied to appropriate value

Modes Overview

ARM Processor

— .
- -~
- ~

,+” Application Code's_

4 \

Exception
Return

Exception
Entry

Not shown: Handler mode can also be re-entered on exception return

Processor Mode

Handler Mode

Used to handle exceptions. The processor returns to Thread mode when it has
finished exception processing.

Thread Mode

Used to execute application software. The processor enters Thread mode when it
comes out of reset.

In Thread mode, the CONTROL register controls whether software execution is
privileged or unprivileged, see CONTROL register. In Handler mode, software
execution is always privileged.

Privilege Levels

Unprivileged
The software:

has limited access to the MSR and MRS instructions, and cannot use the CPS
Instruction

cannot access the system timer, NVIC, or system control block
might have restricted access to memory or peripherals.
Unprivileged software executes at the unprivileged level

Privileged
The software can use all the instructions and has access to all resources.

Instruction Set Examples:

Data Processing:
MOV r2, rb5
ADD r5, #0x24
ADD r2, r3, r4d, LSL #2
LSL r2, #3
MOVT r9, #0x1234
MLA r0, rl, r2, r3

Memory Access:
STRB r2, [rl0, rl]

LDR rO0, [rl, r2, LSL #2]

Program Flow:
BL <label>

r2 r5

r5 = r5 + 36

r2 = r3 + (rd4d * 4)
r2 =r2 * 8

; upper halfword of r9 = #0x1234

r0 (rl * r2) + r3

store lower byte in r2 at
address {rl0 + rl}

load r0O with data at address
{rl + r2 * 4}

PC relative branch to <label>
location, and return address
stored in LR (rl4)

Exception Handling

Exception types:
Reset
Non-maskable Interrupts (NMI)
Faults
PendSV
SVCall
External Interrupt
SysTick Interrupt

Exceptions processed in Handler mode (except Reset)
Exceptions always run privileged

Interrupt handling
Interrupts are a sub-class of exception
Automatic save and restore of processor registers (XPSR, PC, LR, R12, R3-R0)
Allows handler to be written entirely in ‘C’

External Interrupts

External Interrupts handled by Nested Vectored Interrupt Controller (NVIC)
Tightly coupled with processor core

One Non-Maskable Interrupt (NMI) supported

Number of external interrupts is implementation-defined
ARMvV7-M supports up to 496 interrupts

INTNMI —
INTISR[0] —
: Cortex-Mx
INTISR[N] — Processor Core

Cortex-Mx Integration Layer

Exception & Pres-emption Ordering

= Exception handling order is defined by programmable priority
= Reset, Non Maskable Interrupt (NMI) and Hard Fault have predefined pre-emption.
= NVIC catches exceptions and pre-empts current task based on priority

exception | Name | Priorty | Descriptions

1 Reset -3 (Highest) Reset
g 2 NMI 2 Non-Maskable Interrupt
E :1:‘!:5 3 Hard Fault -1 Default fault if other hander not implemented
'§ s- - MemManage Fault Programmable MPU violation or access to illegal locations
g g 5 Bus Fault Programmable Fault if AHB interface receives error

7N 6 Usage Faulit Programmable Exceptions due to program errors

- SVCall Programmable System SerVice call
g % Debug Monitor Programmable Break points, watch points, external debug
‘%é PendSV Programmable Pendable SerVice request for System Device

Systick Programmable System Tick Timer

16 Interrupt #0 Programmable External Interrupt #0

Custom
Handlers

255 Interrupt #239 Programmable External Interrupt #239

Exception Handling Example

Higher Priority

IRQ1

IRQ2

IRQ3

Base CPU

Core Execution

7'
Foreground ISR2 _ISRZ ISR3 Foreground

(ISR 2 resumes)

% Time

Interrupt Response — Tail Chaining

Highest
IRQ1
IRQ2
ARM7TDMI
Interrupt Handling L7 ISR 1 Pop Push | ISR 2 | Pop
—— Ay fe— Ap—l
26 Cycles 16 Cycles 26 Cycles 16 Cycles
Cortex-M3 65% Saving
Interrupt Handling Pusri ISR I ISR2 Pop | &= Cycle Overhead *
e - -—
12 Cycles 6 Cycles 12 Cycles
Tail-Chaining
ARM7TDMI Cortex-M3
=26 cycles from IRQ1 to ISR1 = 12 cycles from IRQ1 to ISR1
(up to 42 cycles if in LSM) (Interruptible/Continual LSM)
» 42 cycles from ISR1 exit to ISR2 entry = 6 cycles from ISR1 exit to ISR2 entry

» 16 cycles to return from ISR2 = 12 cycles to return from ISR2

Interrupt Response — Late Arriving

Highest

IRQ1

IRQ2
ARM7TDMI
Interrupt Handlingl_i Push Push ISR 1 Pop | ISR 2 | Pop
L= > < > — p—
?6 Cycles 26 Cycles 16 Cycles 16 Cycles
Cortex-M3 E -
Interrupt HandlingIP“!‘"I ISR 1 I ISR 2 il
1;C_y;es 6 gy.c.:les 12 Cycles
Tail-Chaining
ARM7TDMI Cortex-M3
»26 cycles to ISR2 entered *12 cycles to ISR entry
* Immediately pre-empted by IRQ1 =Parallel stacking & instruction fetch
Additional 26 cycles to enter ISR1. =Target ISR may be changed until last
* ISR 1 completes cycle (PC is set)

Additional 16 cycles return to ISR2. *When IRQ1 occurs new target ISR set

Interrupt Response — Pop Pre-emption

Highest

IRQ1 \
IRQ2 ; l

ARM7TDMI :
i ISR 2
Interrupt Handling i I §P°p Fash I Pop
hﬁ —
1€Cycles 26 Cycles 16 Cycles
Cortex-M3 I
Interrupt Handling § ik I ISR 2 Pop
: - i
i : 6 Cycles 12 Cycles

A.bandon Pop (1-12 Cycles) Tail-Chaining

ARM7TDMI Cortex-M3

=Load multiple not interruptible » Hardware un-stacking interruptible
= Core must complete the recovery of = If interrupted only 6 cycles required
the stack then re-stack to enter the ISR to enter ISR2

First entry contains initial Main SP

All other entries are addresses for
exception handlers

Must always have LSBit = 1 (for Thumb)

Table has up to 496 external interrupts
Implementation-defined
Maximum table size is 2048 bytes

Table may be relocated
Use Vector Table Offset Register

Still require minimal table entries at 0x0
for booting the core

Each exception has a vector number

Used in Interrupt Control and State
Register to indicate the active or pending
exception type

Table can be generated using C code
Example provided later

Vector Table for ARMv7-M

Address
0x40 + 4*N

0x40
0x3C
0x38
0x34
0x30
0x2C
0x1C to 0x28
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

External N

External O

SysTick

PendSV

Reserved

Debug Monitor

SVC

Reserved (x4)

Usage Fault

Bus Fault

Mem Manage Fault

Hard Fault

NMI

Reset

Initial Main SP

Vector #
16 + N

16
15
14
13
12
11
7-10

R N W B~ O

N/A

Reset Behavior

ok b=

Sl T —-_—————

0x04 | Reset Handler Vector

@—’)00l Initial value of MSP

rl3 (MSP)

A\ 4

3

A reset occurs (Reset input was asserted)

Load MSP (Main Stack Pointer) register initial value from address 0x00
Load reset handler vector address from address 0x04

Reset handler executes in Thread Mode

Optional: Reset handler branches to the main program

Exception Behaviour

Exception Vector

1. Exception occurs
Current instruction stream stops
Processor accesses vector table
2. Vector address for the exception loaded from the vector table
3. Exception handler executes in Handler Mode
4. Exception handler returns to main

Interrupt Service Routine Entry

When receiving an interrupt the processor will finish the current instruction
for most instructions

To minimize interrupt latency, the processor can take an interrupt during the
execution of a multi-cycle instruction - see next slide

Processor state automatically saved to the current stack
8 registers are pushed: PC, R0-R3, R12, LR, xPSR
Follows ARM Architecture Procedure Calling Standard (AAPCS)

During (or after) state saving the address of the ISR is read from the Vector
Table

Link Register is modified for interrupt return

First instruction of ISR executed

For Cortex-M3 or Cortex-M4 the total latency is normally 12 cycles, however,
interrupt late-arrival and interrupt tail-chaining can improve IRQ latency

ISR executes from Handler mode with Main stack

Returning From Interrupt

Can return from interrupt with the following instructions when the PC is
loaded with “magic” value of OXFFFF_FFFX (same format as EXC_RETURN)

LDR PC,
LDM/POP which includes loading the PC
BX LR (most common)

If no interrupts are pending, foreground state is restored
Stack and state specified by EXC_RETURN is used
Context restore on Cortex-M3 and Cortex-M4 requires 10 cycles

If other interrupts are pending, the highest priority may be serviced
Serviced if interrupt priority is higher than the foreground’s base priority
Process is called Tail-Chaining as foreground state is not yet restored
Latency for servicing new interrupt is only 6 cycles on M3/M4 (state already saved)

If state restore is interrupted, it is abandoned
New ISR executed without state saving (original state still intact and valid)
Must still fetch new vector and refill pipeline (6-cycle latency on M3/M4)

Vector Tablein C

typedef void(* const ExecFuncPtr) (void) _ irq;

#fipragma arm section rodata="exceptions area”

ExecFuncPtr exception table[] = ({
(ExecFuncPtr) &Image$$ARM LIB STACKS$SZISSLimit, /* Initial SP */
(ExecFuncPtr) main, /* Initial PC */
NMIException, _ The vector table at address \
HardFaultException,

0x0 is minimally required to
have 4 values: stack top,
reset routine location,

MemManageException,
BusFaultException,

UsageFaultException, NMI ISR location,
o, o, 0, O, /* Reserved */
SVCHandler,
DebugMonitor, (The SVCall ISR
0, /* Reserved * location must be
PendSVC, populated if the SVC
SysTickHandler instruction will be
/* Configurable interrupts start here...*/ i used
}; enabled, the vector
#pragma arm section table (whether at O

or in SRAM) must
then have pointers
to all enabled (by

Vector Table in Assembly

PRESERVES

THUMB

IMPORT | |Image$$ARM LIB STACKS$$ZIS$SLimit| |
AREA RESET, DATA, READONLY

EXPORT _ Vectors
__Vectors DCD | | Image$$ARM LIB STACKSSZISSLimit] | ; Top of Stack
DCD Reset Handler ; Reset Handler
DCD NMI Handler ; NMI Handler
DCD HardFault Handler ; Hard Fault Handler
DCD MemManage Handler ; MemManage Fault Handler
DCD BusFault Handler ; Bus Fault Handler
DCD UsageFault Handler ; Usage Fault Handler
DCD o, o, 0, O, ; Reserved x4
DCD SVC_Handler, ; SVCall Handler
DCD Debug Monitor ; Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick Handler ; SysTick Handler

; External vectors start here

Memory Systems

Processor Memory Map

External Private Peripheral Bus

EOOF_FEFF ROM Table
EOOF _F000
UNUSED FFFF_FFFF
E004 2000 B C
E004 1000 2l E000_0000
TPIU
E004 0000
E003 FFFF : Peripnera
RESERVED
E000 F000
B NVIC A000_0000
E000 E000
RESERVED
E000 3000 -
FPB : 2
E000 2000 RA
DWT
E000 1000
E000 0000 JL 6000_0000

Internal Private Peripheral Bus

4000_0000

2000_0000

512MB Code
0000_0000

Memory Types and Properties

There are 3 different memory types:
Normal, Device and Strongly Ordered

Normal memory is the most flexible memory type:
Suitable for different types of memory, for example, ROM, RAM, Flash and SDRAM
Accesses may be restarted
Caches and Write Buffers are permitted to work alongside Normal memory

Device memory is suitable for peripherals and I/O devices
Caches are not permitted, but write buffers are still supported
Unaligned accesses are unpredictable

Accesses must not be restarted
Load/store multiple instructions should not be used to access Device memory

Strongly ordered memory is similar to Device memory
Buffers are not supported and the PPB is marked Strongly Ordered

System Control Block

Memory mapped space containing registers to configure, control, and deal
with interrupts, exceptions, and debug

Replaces co-processor #15 in older ARM cores

Address Type Reset Value | Function

OxEOOOEOOO Read/Write 0x00000000 Master Control register - RESERVED
OxEOOOEO004 Read Only IMP DEFINED Interrupt Controller Type Register
OxEOOOEDOO Read Only IMP DEFINED CPUID Base Register

OxEOOOEDO4 Read/Write 0x00000000 Interrupt Control State Register
OxEOOOEDO8 Read/Write 0x00000000 Vector Table Offset Register
OxEOOOEDOC Read/Write Bits[10:8] =000 | Application Interrupt/Reset Control

Register

More SCB Registers

Address Type Reset Value | Function

OxEOOOED10 Read/Write 0x00000000 System Control Register

OxEOOOED14 Read/Write 0x00000000 Configuration Control Register
OxEOOOED18 Read/Write 0x00000000 System Handlers 4-7 Priority Register
OxEOOOED1C Read/Write 0x00000000 System Handlers 8-11 Priority Register
OxEOOOED20 Read/Write 0x00000000 System Handlers 12-15 Priority Register
OxEOOOED24 Read/Write 0x00000000 System Handler Control and State Register
OxEOOOED28 Read/Write n/a - status Configurable Fault Status Registers (3)
OxEOOOED2C Read/Write n/a - status HardFault Status Register

OxEOOOED30 Read/Write n/a - status DebugFault Status Register

OxEOOOED34 Read/Write Unpredictable MemManage Address Register
OxEOOOED38 Read/Write Unpredictable BusFault Address Register

OxEOOOED3C Read/Write Unpredictable Auxiliary Fault Status Register (vendor specific)
OxEOOOEFO00 Write Only Software Trigger Interrupt Register

Floating Point Extensions

Cortex-M4

Cortex™-M4

ARMvV7E-M Architecture
= Thumb-2 only
= DSP extensions

Optional FPU (Cortex-M4F)

Otherwise, same as Cortex-M3

Implements full Thumb-2
Instruction set

= Saturated math (e.g. QADD)

= Packing and unpacking (e.g. UXTB)
= Signed multiply (e.g. SMULTB)

= SIMD (e.g. ADDS8)

Cortex-M4F Floating Point Registers

FPU provides a further 32 single-precision registers
Can be viewed as either

32 x 32-bit registers S0 DO
16 x 64-bit doubleword registers S1
Any combination of the above S2 D1
S3
S4
D2
S5
S6
S7 D3
S28
D14
S29
S30
D1
S31 >

Cortex-M4 FPU

<
s
-
]
(Y

-u
S
v
—
-~
(=]
s
=t
2
o

x-M3

Binary Upwards Compatibility

t4

ARMvV7-M
Architec

ARMvV6-M
Architecture

ARM System Design

Example ARM-based system

ARM core deeply embedded within an
SoC

External debug and trace via JTAG or
CoreSight interface

Design can have both external and
internal memories
Varying width, speed and size —
depending on system requirements

Can include ARM licensed CoreLink
peripherals

Interrupt controller, since core only has
two interrupt sources

Other peripherals and interfaces

Can include on-chip memory from
ARM Artisan Physical IP Libraries

Elements connected using AMBA
(Advanced Microcontroller Bus
Architecture)

114

Clocks and

Reset Controller

ARM

Processor

core

DEBUG

11

niRQ
nFIQ

CoreLink
Interrupt
Controller

“_

Other
CoreLink
Peripherals

g

Custom
Peripherals “

AMBA APB

DMA
Port

External
Memory
Interface

AMBA AXI

On chip
memory

APB
Bridge

1 &£+ 1t 1

—

ARM based
SoC

An Example AMBA System

High Performance
ARM processor

High
Bandwidth
External
Memory
Interface

— UART

— Timer

— Keypad

High-bandwidth D]\V/VAN
on-chip RAM Bus Master

High Performance
Pipelined

Burst Support
Multiple Bus Masters

— PIO

Low Power
Non-pipelined
Simple Interface

STM32 32-bit ARM Cortex MCUs

STM32 32-bit ARM Co

A

| 2020 CoreMark
§ 400 MHz
E | 856 DMIPS
- :
- : :
=
= '
=
398 CoreMark | 608 CoreMark | 1082 CoreMark
120MHz | 180MHz 216 MHz
150DMIPS | 225DMIPS | 462 DMIPS
» More High performance
£
()
£
g 245 CoreMark*
= 106 CoreMark 177 CoreMark 72MHz |
48 MHz 72 MHz 00 DMPS®
38 DMIPS 61 DMIPS '
» More Mainstream
409 CoreMark
120 MHz
150 DMIPS
75 CoreMark 93 CoreMark | 273 CoreMark |
32 MHz 32 MHz 80 MHz
26 DMIPS 33 DMIPS 100 DMIPS

STM32 F4 series
High-performance Cortex™-M4 MCU

STM3§' Releasing your creativity

BN STM32F4 <l

Real-time performance K’l

\

p
-bi i- - AIBESiphetiatis? 3
32-bit multi-AHB bus matrix RSP s

_(WeRsignagrsigijic)
] _icBRAN MIGtAsh

_ todisplay /

80 Mbit's

100 Mbit/s
12.5 MByte/s J60 MByte/s

Bus slaves
1

FSMC

AHB2 peripheral

AHB1 peripheral

{ AHB1;‘APB&

AHE1/APBZ —

SRAM 16 Kbytes

SRAM 112 Kbytes

T-layer 32-bit multi-AHB bus matrix

STM32 F4 series
High-performance digital signal controller

S74

ARM Single precision FPU
Ease of use

Better code efficiency
[||

= mE om AR Faster time to market
corte =iminae sceling erd saturatio

Low-Power Leadership from ARM Easier support for meta-language tools

DSP

Harvard architecture
Single-cycle MAC
Barrel shifter

Ease of use of C
programming
Interrupt handling
Ultra-low power

4 product series

Common core peripherals and architecture: STM32 F4 series - High performance with DSP (STM32F405/415/407/417)

168 MHz e
Cartey. M Upto Upto 2x USB : AN SDIO Crypto/hash
Cortex-M4 | 195 kpyte | 1-Mbyte | 2.007G | SPhase [2XCAN|o, oo gio | ENEMEL | orocessor

IEEE 1588) “and RNG

with DSP 3 Aomp MC timer 2.0B X
and FPU SRAM Flash FS/HS Camera IF

Communication peripherals:
USART, SPI, I2C

T Walipie pneral-pupoes o STM32 F2 series - High performance (STM32F205/215/207/217)

Integrated reset and brown-out
warning

STM32 F1 series - Connectivity line (STM32F105/107)
72 MHz UD to ll) to : :

STM32 product series "l
e

Multiple DMA

2x watchdogs
Real-time clock

CcPU OTGFS MCtimer 2.0B EEE 1588
Integrated regulator :
PLL and clock circuit STM32 F1 series - Pedonnanoe line (STM32F103)
External memory interface (FSMC) 72MHz Upto Upto USBFS 3-phase CAN SDI0
Dual 12-bit DAC o 95;&',’“‘9 TMOfe Gevice MCtmer 208 xFS
’;’.P_ LA J:Ith“'v‘ ‘;‘g Zé”m".oﬂl “xS) STM32 F1 series - USB Access line (STM32F102)
ain oscillator a z oscillator 48 MHz Upto Upto
Low-speed and high-speed internal RC + Cortex-M3 16-Kbyle 128-Khm m (\4
oscillators CPU SRAM m"“b
-40 to +85 °C and up to 105 °C STM32 F1 series - Access Ime (STM32F101) L/
operating temperature range 36 MHz Up to
Low voltage 2.0 to 3.6 V or Cortex-M3 80-§byte 1'"32#
1.65/1.7 to 3.6 V (depending on series) CPU

5.0 V tolerant 1/0s

Temperature sensor

STM32 F1 series - Value fine (smszm 00)
24MHz Upto
Congéus 2kore 512-Kbyta g’"’” CEC

STM32 L1 series - Ultra-low-power (STM32F151/152)

32 MHz Upto Data EEPROM
48-Kbyte | 384-Koyte | oo ’S up to i
CPU | SRAM | Fiash

STM32 F4 block diagram

Feature highlight
= 168 MHz Cortex-M4 CPU
= Floating point unit (FPU)
= ART Accelerator ™
= Multi-level AHB bus matrix

= 1-Mbyte Flash,
192-Kbyte SRAM

= 1.7 to 3.6 V supply

= RTC: <1 pA typ, sub second
accuracy

= 2x full duplex I12S

= 3x 12-bit ADC
0.41 ps/2.4 MSPS

= 168 MHz timers

ART Accelerator™
Power supply
1.2V regulator
POR/PDR/PYD
Xtal oscillators
32 kHz + 4 ~26 MHz il

Internal RC oscillators
32 kHz + 16 MHz

2x watchdogs
dent and window)

14/1401/0s

Cyclic redundancy
check (CRC)

Floating point unit (FPU)

Nested vector inter-
rupt

controller (NVIC)

JTAG/SW debug/ETM

Multi-AHB bus matrix

16-channel DMA
Crypto/hash processor?

SHA-1, MD5, HMAC

True random number
generator (RNG)
Nates:
1. HS requires an external PHY connected to the ULPI interface
2. Cryptowhash processor on STM32FH 7 and STM32F415

>/ A

Up to 1-Mbyte Flash memory

Up to 192-Kbyte SRAM

FSMC/
SRAM/NOR/NAND/CF/
LCD parallel interface

B80-byte + 4-Kbyte
backup SRAM

512 OTP bytes

Connectivity
3x 5P, 2x 125, 3x FC

Ethernet MAC 10/100
with IEEE 1588

2% CAN 2.0B
1% USB 2.0 OTG FS/HS'
1% USB 2.0 OTG FS
Bx USART
LIN, smartcard, IrDA,
modem control

2-channel 2x 12-bit DAC
K12)

Temperature sensor

