
1
University Program Material

Copyright © ARM Ltd 2012

Cortex-M4 Processor Overview

with ARM Processors and Architectures

2
University Program Material

Copyright © ARM Ltd 2012

Introduction

3
University Program Material

Copyright © ARM Ltd 2012

ARM

 ARM was developed at Acorn Computer Limited of Cambridge, UK (between

1983 & 1985)

 RISC concept introduced in 1980 at Stanford and Berkeley

 ARM founded in November 1990

 Advanced RISC Machines

 Best known for its range of RISC processor cores designs

 Other products – fabric IP, software tools, models, cell libraries - to help partners

develop and ship ARM-based SoCs

 ARM does not manufacture silicon

 Licensed to partners to develop and fabricate new micro-controllers

 Soft-core

4
University Program Material

Copyright © ARM Ltd 2012

ARM Architecture

 Based upon RISC Architecture with enhancements to meet requirements of

embedded applications

 A large uniform register file

 Load-store architecture

 Fixed length instructions

 32-bit processor (v1-v7), 64-bit processor (v8)

 Good speed/power

 High code density

5
University Program Material

Copyright © ARM Ltd 2012

Enhancement to Basic RISC

 Control over both ALU and shifter for every data processing operations

 ADD r2, r3, r4, LSL #2 ; r2 = r3 + (r4 * 4)

 Auto-increment and auto-decrement addressing modes

 To optimize program loops

 Load/Store multiple data instructions

 To maximize data throughput

 LDM, STM

 Conditional execution of instructions

 To maximize execution throughput

6
University Program Material

Copyright © ARM Ltd 2012

Embedded Processors

7
University Program Material

Copyright © ARM Ltd 2012

Application Processors

8
University Program Material

Copyright © ARM Ltd 2012

ARM Processor Family

9
University Program Material

Copyright © ARM Ltd 2012

Summary of Processor Characteristics

10
University Program Material

Copyright © ARM Ltd 2012

Pipeline

11
University Program Material

Copyright © ARM Ltd 2012

ARM Cortex Advanced Processors

12
University Program Material

Copyright © ARM Ltd 2012

Application Examples

13
University Program Material

Copyright © ARM Ltd 2012

ARM Architecture Overview

14
University Program Material

Copyright © ARM Ltd 2012

Architecture History

15
University Program Material

Copyright © ARM Ltd 2012

Halfword and

signed halfword

/ byte support

System mode

Thumb

instruction set

(v4T)

Improved

interworking

CLZ

Saturated arithmetic

DSP MAC

instructions

Extensions:

Jazelle (5TEJ)

SIMD Instructions

Multi-processing

v6 Memory architecture

Unaligned data support

Extensions:

Thumb-2 (6T2)

TrustZone® (6Z)

Multicore (6K)

Thumb only (6-M)

 Note that implementations of the same architecture can be different

 Cortex-A8 - architecture v7-A, with a 13-stage pipeline

 Cortex-A9 - architecture v7-A, with an 8-stage pipeline

Thumb-2

Architecture Profiles

7-A - Applications

7-R - Real-time

7-M - Microcontroller

v4 v5 v6 v7

Development of the ARM Architecture

16
University Program Material

Copyright © ARM Ltd 2012

Architecture ARMv7 profiles

 Application profile (ARMv7-A)

 Memory management support (MMU)

 Highest performance at low power

 Influenced by multi-tasking OS system requirements

 TrustZone and Jazelle-RCT for a safe, extensible system

 e.g. Cortex-A5, Cortex-A9

 Real-time profile (ARMv7-R)

 Protected memory (MPU)

 Low latency and predictability ‘real-time’ needs

 Evolutionary path for traditional embedded business

 e.g. Cortex-R4

 Microcontroller profile (ARMv7-M, ARMv7E-M, ARMv6-M)

 Lowest gate count entry point

 Deterministic and predictable behavior a key priority

 Deeply embedded use

 e.g. Cortex-M3

17
University Program Material

Copyright © ARM Ltd 2012

Which architecture is my processor?

18
University Program Material

Copyright © ARM Ltd 2012

Cotex-M Processor Family

19
University Program Material

Copyright © ARM Ltd 2012

ARMv7-M Architecture

20
University Program Material

Copyright © ARM Ltd 2012

ARMv7-M Profile Overview

 v7-M Cores are designed to support the microcontroller market

 Simpler to program – entire application can be programmed in C

 Fewer features needed than in application processors

 Register and ISA changes from other ARM cores

 No ARM instruction set support

 Only one set of registers

 xPSR has different bits than CPSR

 Different modes and exception models

 Only two modes: Thread mode and Handler mode

 Vector table is addresses, not instructions

 Exceptions automatically save state (r0-r3, r12, lr, xPSR, pc) on the stack

 Different system control/memory layout

 Cores have a fixed memory map

 No coprocessor 15 – controlled through memory mapped control registers

21
University Program Material

Copyright © ARM Ltd 2012

Cortex-M3

Cortex M3 Total

60k* Gates

 ARMv7-M Architecture

 Thumb-2 only

 Fully programmable in C

 3-stage pipeline

 Optional MPU

 AHB-Lite bus interface

 Fixed memory map

 1-240 interrupts

 Configurable priority levels

 Non-Maskable Interrupt support

 Debug and Sleep control

 Serial wire or JTAG debug

 Optional ETM

22
University Program Material

Copyright © ARM Ltd 2012

Cortex-M0

Cortex M3 Total

60k* Gates

 ARMv6-M Architecture

 16-bit Thumb-2 with system control

instructions

 Fully programmable in C

 3-stage pipeline

 AHB-Lite bus interface

 Fixed memory map

 1-32 interrupts

 Configurable priority levels

 Non-Maskable Interrupt support

 Low power support

 Core configured with or without

debug

 Variable number of watchpoints and

breakpoints

23
University Program Material

Copyright © ARM Ltd 2012

Thumb-2 Technology

24
University Program Material

Copyright © ARM Ltd 2012

Programmer’s Model

25
University Program Material

Copyright © ARM Ltd 2012

Processor Register Set

 Registers R0-R12

 General-purpose registers

 R13 is the stack pointer (SP) - 2 banked versions

 R14 is the link register (LR)

 R15 is the program counter (PC)

 PSR (Program Status Register)

 Not explicitly accessible

 Saved to the stack on an exception

 Subsets available as APSR, IPSR, and EPSR

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

PSR

R13 (SP)

R14 (LR)

26
University Program Material

Copyright © ARM Ltd 2012

Special Purpose Registers

 Program Status Register

 Described in upcoming slides

 Special Purpose Mask Registers : PRIMASK, FAULTMASK, BASEPRI

 Used to modify exception priorities

 To set/clear PRIMASK and FAULTMASK, use CPS instructions

 CPSIE i / CPSID i / CPSIE f / CPSID f

 Special Purpose CONTROL Register

 2 bits

 Bit 0 defines Thread mode privilege

 Bit 1 defines Thread mode stack

 The Special Purpose Registers are not memory-mapped

 Accessed via specific instructions

 MRS – Move special purpose register to general-purpose register

 MSR – Move general-purpose register to special purpose register

27
University Program Material

Copyright © ARM Ltd 2012

xPSR - Program Status Register

 xPSR stored on stack during exceptions

 Condition code flags

 N = Negative result from ALU

 Z = Zero result from ALU

 C = ALU operation carry out

 V = ALU operation overflow

 Q = Saturated math overflow

 IT/ICI bits

 Contain IF-THEN base condition code or Interrupt Continue information

 ISR Number

 Stacked xPSR shows which exception was pre-empted

 T=1

IT/ICIIT

2731

N Z C V Q

28 8

ISR Number

1623 15 0242526 10

T

19

GE[3:0]

20 9

28
University Program Material

Copyright © ARM Ltd 2012

System Timer – SysTick

 Flexible system timer

 24-bit self-reloading down counter

 Reload on count == 0

 Optionally cause SysTick interrupt on count == 0

 Reload register

 Calibration value

 Clock source is CPU clock or optional external timing reference

 Software selectable if provided

 Reference pulse widths High/Low must exceed processor clock period

 Counted by sampling on processor clock

 Calibration Register provides value required for 10ms interval

 STCALIB inputs tied to appropriate value

29
University Program Material

Copyright © ARM Ltd 2012

Modes Overview

ARM Processor

Application Code

Thread
Mode

Exception Code

Handler
Mode

Exception

Entry
Exception

Return

Reset

Not shown: Handler mode can also be re-entered on exception return

30
University Program Material

Copyright © ARM Ltd 2012

Processor Mode

 Handler Mode

 Used to handle exceptions. The processor returns to Thread mode when it has

finished exception processing.

 Thread Mode

 Used to execute application software. The processor enters Thread mode when it

comes out of reset.

 In Thread mode, the CONTROL register controls whether software execution is

privileged or unprivileged, see CONTROL register. In Handler mode, software

execution is always privileged.

31
University Program Material

Copyright © ARM Ltd 2012

Privilege Levels

 Unprivileged

The software:

 has limited access to the MSR and MRS instructions, and cannot use the CPS

instruction

 cannot access the system timer, NVIC, or system control block

 might have restricted access to memory or peripherals.

 Unprivileged software executes at the unprivileged level

 Privileged

 The software can use all the instructions and has access to all resources.

32
University Program Material

Copyright © ARM Ltd 2012

Instruction Set Examples:

 Data Processing:

MOV r2, r5 ; r2 = r5

ADD r5, #0x24 ; r5 = r5 + 36

ADD r2, r3, r4, LSL #2 ; r2 = r3 + (r4 * 4)

LSL r2, #3 ; r2 = r2 * 8

MOVT r9, #0x1234 ; upper halfword of r9 = #0x1234

MLA r0, r1, r2, r3 ; r0 = (r1 * r2) + r3

 Memory Access:

STRB r2, [r10, r1] ; store lower byte in r2 at

address {r10 + r1}

LDR r0, [r1, r2, LSL #2] ; load r0 with data at address

{r1 + r2 * 4}

 Program Flow:

BL <label> ; PC relative branch to <label>

location, and return address

stored in LR (r14)

33
University Program Material

Copyright © ARM Ltd 2012

Exception Handling

 Exception types:

 Reset

 Non-maskable Interrupts (NMI)

 Faults

 PendSV

 SVCall

 External Interrupt

 SysTick Interrupt

 Exceptions processed in Handler mode (except Reset)

 Exceptions always run privileged

 Interrupt handling

 Interrupts are a sub-class of exception

 Automatic save and restore of processor registers (xPSR, PC, LR, R12, R3-R0)

 Allows handler to be written entirely in ‘C’

34
University Program Material

Copyright © ARM Ltd 2012

External Interrupts

 External Interrupts handled by Nested Vectored Interrupt Controller (NVIC)

 Tightly coupled with processor core

 One Non-Maskable Interrupt (NMI) supported

 Number of external interrupts is implementation-defined

 ARMv7-M supports up to 496 interrupts

…
…

Cortex-Mx

Processor Core

INTISR[0]

…

…

INTISR[N]

INTNMI

NVIC

Cortex-Mx Integration Layer

35
University Program Material

Copyright © ARM Ltd 2012

Exception & Pres-emption Ordering

36
University Program Material

Copyright © ARM Ltd 2012

Exception Handling Example

Core Execution

Higher Priority

Base CPU

IRQ2

IRQ1

Foreground ISR2 ISR1 ISR2 Foreground

Time

IRQ3

ISR3

(ISR 2 resumes)

37
University Program Material

Copyright © ARM Ltd 2012

Interrupt Response – Tail Chaining

38
University Program Material

Copyright © ARM Ltd 2012

Interrupt Response – Late Arriving

39
University Program Material

Copyright © ARM Ltd 2012

Interrupt Response – Pop Pre-emption

40
University Program Material

Copyright © ARM Ltd 2012

Vector Table for ARMv7-M
 First entry contains initial Main SP

 All other entries are addresses for
exception handlers

 Must always have LSBit = 1 (for Thumb)

 Table has up to 496 external interrupts

 Implementation-defined

 Maximum table size is 2048 bytes

 Table may be relocated

 Use Vector Table Offset Register

 Still require minimal table entries at 0x0
for booting the core

 Each exception has a vector number

 Used in Interrupt Control and State
Register to indicate the active or pending
exception type

 Table can be generated using C code

 Example provided later

Reserved (x4)

Usage Fault

Mem Manage Fault

Hard Fault

NMI

Reset

Initial Main SP

0x1C to 0x28

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

16 + N

…

16

15

14

13

12

11SVC

Debug Monitor

Reserved

PendSV

SysTick

External 0

Bus Fault

…

External N0x40 + 4*N

…

0x40

0x3C

0x38

0x34

0x30

0x2C

7-10

6

5

4

3

2

1

N/A

Address Vector #

41
University Program Material

Copyright © ARM Ltd 2012

Reset Behavior

1. A reset occurs (Reset input was asserted)

2. Load MSP (Main Stack Pointer) register initial value from address 0x00

3. Load reset handler vector address from address 0x04

4. Reset handler executes in Thread Mode

5. Optional: Reset handler branches to the main program

0x04

0x001

Reset Handler

Initial value of MSP

Reset Handler Vector

r13 (MSP)

2

4

3

Main

5

42
University Program Material

Copyright © ARM Ltd 2012

Exception Behaviour

1. Exception occurs

 Current instruction stream stops

 Processor accesses vector table

2. Vector address for the exception loaded from the vector table

3. Exception handler executes in Handler Mode

4. Exception handler returns to main

Exception Handler

Exception Vector

2

3

Main

1

4

43
University Program Material

Copyright © ARM Ltd 2012

Interrupt Service Routine Entry
 When receiving an interrupt the processor will finish the current instruction

for most instructions

 To minimize interrupt latency, the processor can take an interrupt during the

execution of a multi-cycle instruction - see next slide

 Processor state automatically saved to the current stack

 8 registers are pushed: PC, R0-R3, R12, LR, xPSR

 Follows ARM Architecture Procedure Calling Standard (AAPCS)

 During (or after) state saving the address of the ISR is read from the Vector
Table

 Link Register is modified for interrupt return

 First instruction of ISR executed

 For Cortex-M3 or Cortex-M4 the total latency is normally 12 cycles, however,

interrupt late-arrival and interrupt tail-chaining can improve IRQ latency

 ISR executes from Handler mode with Main stack

44
University Program Material

Copyright © ARM Ltd 2012

Returning From Interrupt

 Can return from interrupt with the following instructions when the PC is
loaded with “magic” value of 0xFFFF_FFFX (same format as EXC_RETURN)

 LDR PC, …..

 LDM/POP which includes loading the PC

 BX LR (most common)

 If no interrupts are pending, foreground state is restored

 Stack and state specified by EXC_RETURN is used

 Context restore on Cortex-M3 and Cortex-M4 requires 10 cycles

 If other interrupts are pending, the highest priority may be serviced

 Serviced if interrupt priority is higher than the foreground’s base priority

 Process is called Tail-Chaining as foreground state is not yet restored

 Latency for servicing new interrupt is only 6 cycles on M3/M4 (state already saved)

 If state restore is interrupted, it is abandoned

 New ISR executed without state saving (original state still intact and valid)

 Must still fetch new vector and refill pipeline (6-cycle latency on M3/M4)

45
University Program Material

Copyright © ARM Ltd 2012

The vector table at address

0x0 is minimally required to

have 4 values: stack top,

reset routine location,

NMI ISR location,

HardFault ISR location

Vector Table in C

Once interrupts are

enabled, the vector

table (whether at 0

or in SRAM) must

then have pointers

to all enabled (by

mask) exceptions

The SVCall ISR

location must be

populated if the SVC

instruction will be

used

typedef void(* const ExecFuncPtr)(void) __irq;

#pragma arm section rodata="exceptions_area”

ExecFuncPtr exception_table[] = {

(ExecFuncPtr)&Image$$ARM_LIB_STACK$$ZI$$Limit, /* Initial SP */

(ExecFuncPtr)__main, /* Initial PC */

NMIException,

HardFaultException,

MemManageException,

BusFaultException,

UsageFaultException,

0, 0, 0, 0, /* Reserved */

SVCHandler,

DebugMonitor,

0, /* Reserved */

PendSVC,

SysTickHandler

/* Configurable interrupts start here...*/

};

#pragma arm section

46
University Program Material

Copyright © ARM Ltd 2012

Vector Table in Assembly
PRESERVE8

THUMB

IMPORT ||Image$$ARM_LIB_STACK$$ZI$$Limit||

AREA RESET, DATA, READONLY

EXPORT __Vectors

__Vectors DCD ||Image$$ARM_LIB_STACK$$ZI$$Limit|| ; Top of Stack

DCD Reset_Handler ; Reset Handler

DCD NMI_Handler ; NMI Handler

DCD HardFault_Handler ; Hard Fault Handler

DCD MemManage_Handler ; MemManage Fault Handler

DCD BusFault_Handler ; Bus Fault Handler

DCD UsageFault_Handler ; Usage Fault Handler

DCD 0, 0, 0, 0, ; Reserved x4

DCD SVC_Handler, ; SVCall Handler

DCD Debug_Monitor ; Debug Monitor Handler

DCD 0 ; Reserved

DCD PendSV_Handler ; PendSV Handler

DCD SysTick_Handler ; SysTick Handler

; External vectors start here

47
University Program Material

Copyright © ARM Ltd 2012

Memory Systems

48
University Program Material

Copyright © ARM Ltd 2012

Processor Memory Map

Code

SRAM

System

Peripheral

External
Peripheral

External
SRAM

FFFF_FFFF

2000_0000

4000_0000

6000_0000

A000_0000

E000_0000

0000_0000

512MB

1GB

1 GB

512MB

512MB

512MB

ITM

Internal Private Peripheral Bus

E000_E000

E000_3000

E000_2000

E000_1000

E000_0000

E000_F000

E00F_F000

E004_2000

E004_1000

E004_0000

E00F_FFFF

External Private Peripheral Bus

DWT

FPB

NVIC

RESERVED

RESERVED

UNUSED

TPIU

ETM

ROM Table

E003_FFFF

(XN)

49
University Program Material

Copyright © ARM Ltd 2012

Memory Types and Properties

 There are 3 different memory types:

 Normal, Device and Strongly Ordered

 Normal memory is the most flexible memory type:

 Suitable for different types of memory, for example, ROM, RAM, Flash and SDRAM

 Accesses may be restarted

 Caches and Write Buffers are permitted to work alongside Normal memory

 Device memory is suitable for peripherals and I/O devices

 Caches are not permitted, but write buffers are still supported

 Unaligned accesses are unpredictable

 Accesses must not be restarted

 Load/store multiple instructions should not be used to access Device memory

 Strongly ordered memory is similar to Device memory

 Buffers are not supported and the PPB is marked Strongly Ordered

50
University Program Material

Copyright © ARM Ltd 2012

System Control Block

 Memory mapped space containing registers to configure, control, and deal

with interrupts, exceptions, and debug

 Replaces co-processor #15 in older ARM cores

Application Interrupt/Reset Control

Register

Bits[10:8] = 000Read/Write0xE000ED0C

Vector Table Offset Register0x00000000Read/Write0xE000ED08

Interrupt Control State Register0x00000000Read/Write0xE000ED04

CPUID Base RegisterIMP DEFINEDRead Only0xE000ED00

Interrupt Controller Type RegisterIMP DEFINEDRead Only0xE000E004

Master Control register - RESERVED0x00000000Read/Write0xE000E000

FunctionReset ValueTypeAddress

51
University Program Material

Copyright © ARM Ltd 2012

More SCB Registers

Software Trigger Interrupt RegisterWrite Only0xE000EF00

Auxiliary Fault Status Register (vendor specific)UnpredictableRead/Write0xE000ED3C

BusFault Address RegisterUnpredictableRead/Write0xE000ED38

MemManage Address Register UnpredictableRead/Write0xE000ED34

DebugFault Status Registern/a - statusRead/Write0xE000ED30

HardFault Status Registern/a - statusRead/Write0xE000ED2C

Configurable Fault Status Registers (3)n/a - statusRead/Write0xE000ED28

System Handler Control and State Register0x00000000Read/Write0xE000ED24

System Handlers 12-15 Priority Register0x00000000Read/Write0xE000ED20

System Handlers 8-11 Priority Register0x00000000Read/Write0xE000ED1C

System Handlers 4-7 Priority Register0x00000000Read/Write0xE000ED18

Configuration Control Register0x00000000Read/Write0xE000ED14

System Control Register0x00000000Read/Write0xE000ED10

FunctionReset ValueTypeAddress

52
University Program Material

Copyright © ARM Ltd 2012

Floating Point Extensions

53
University Program Material

Copyright © ARM Ltd 2012

Cortex-M4

Cortex M3 Total

60k* Gates

 ARMv7E-M Architecture

 Thumb-2 only

 DSP extensions

 Optional FPU (Cortex-M4F)

 Otherwise, same as Cortex-M3

 Implements full Thumb-2

instruction set

 Saturated math (e.g. QADD)

 Packing and unpacking (e.g. UXTB)

 Signed multiply (e.g. SMULTB)

 SIMD (e.g. ADD8)

54
University Program Material

Copyright © ARM Ltd 2012

Cortex-M4F Floating Point Registers

 FPU provides a further 32 single-precision registers

 Can be viewed as either

 32 x 32-bit registers

 16 x 64-bit doubleword registers

 Any combination of the above

S31

S30

S29

S28

S3

S2

S1

S0

S7

S6

S5

S4

~
~

~
~

D15

D14

D1

D0

D3

D2

~
~

~
~

55
University Program Material

Copyright © ARM Ltd 2012

Binary Upwards Compatibility

ARMv6-M

Architecture

ARMv7-M

Architecture

56
University Program Material

Copyright © ARM Ltd 2012

ARM System Design

57
University Program Material

Copyright © ARM Ltd 2012

On chip

memory

Example ARM-based system

ARM

Processor

core

A
M

B
A

 A
X

I

External

Memory

Interface

APB

Bridge

A
M

B
A

 A
P

B

CoreLink

Interrupt

Controller

Other

CoreLink

Peripherals

DMA

Port
Clocks and

Reset Controller

 ARM core deeply embedded within an

SoC

 External debug and trace via JTAG or

CoreSight interface

 Design can have both external and

internal memories

 Varying width, speed and size –

depending on system requirements

 Can include ARM licensed CoreLink

peripherals

 Interrupt controller, since core only has

two interrupt sources

 Other peripherals and interfaces

 Can include on-chip memory from

ARM Artisan Physical IP Libraries

 Elements connected using AMBA

(Advanced Microcontroller Bus

Architecture)

DEBUG

nIRQ

nFIQ

FLASH

SDRAM

ARM based

SoC

Custom

Peripherals

58
University Program Material

Copyright © ARM Ltd 2012

High Performance

ARM processor

High-bandwidth

on-chip RAM

High

Bandwidth

External

Memory

Interface

DMA

Bus Master

APB

Bridge

Timer

Keypad

UART

PIO

AHB

APB

High Performance

Pipelined

Burst Support

Multiple Bus Masters

Low Power

Non-pipelined

Simple Interface

An Example AMBA System

59
University Program Material

Copyright © ARM Ltd 2012

STM32 32-bit ARM Cortex MCUs

High-performance Cortex™-M4 MCU

STM32 F4 series

32-bit multi-AHB bus matrix

Real-time performance

Compressed

audio stream

(MP3) to 16kByte

SRAM block

MP3 decoder

code execution

by core

Access to the MP3

data for

decompression

Decompressed

audio stream to

112kByte SRAM

block

DMA transfer to

audio output

stage (I2S)

User interface:

DMA transfers of

the graphical

icons from Flash

to display

STM32 F4 series

High-performance digital signal controller

Single precision

Ease of use

Better code efficiency

Faster time to market

Eliminate scaling and saturation

Easier support for meta-language tools

FPU

Harvard architecture

Single-cycle MAC

Barrel shifter

DSP

Ease of use of C

programming

Interrupt handling

Ultra-low power

MCU

Cortex-M4

What is Cortex-M4?

STM32 product series

4 product series

STM32 F4 block diagram

Feature highlight

 168 MHz Cortex-M4 CPU

 Floating point unit (FPU)

 ART Accelerator TM

 Multi-level AHB bus matrix

 1-Mbyte Flash,
192-Kbyte SRAM

 1.7 to 3.6 V supply

 RTC: <1 µA typ, sub second
accuracy

 2x full duplex I²S

 3x 12-bit ADC
0.41 µs/2.4 MSPS

 168 MHz timers

