
Embedded System Design

Lab Cortex-M4

I2C Oled Display

2

set 9 -- 2

I2C protocol – Background
 Inter-Integrated Circuit Protocol

 I2C is a low-bandwidth, short-distance, two-wire interface for communication
amongst ICs and peripherals

 Originally developed by Philips for TV circuits

 Only two bus lines are required
 The SDA(for data) and SCL(for clock)

 Each device connected to the bus is software addressable

Devices can be 7-bit or 10-bit addressed

3

set 9 -- 3

I2C Features
 Simple master-slave relation amongst devices (either can be receiver or transmitter)

 Multi-bus master collision detection and arbitration is supported

 Serial, 8-bit oriented, bi-directional data transfer can be achieved up to100 kbit/s
(and up to 3.4Mbit/s in the high speed mode)

 Suppose Micro-controller A wants to send info to micro-controller B

1. A (master) addresses B(slave)

2. A (master-transmitter) sends data to B(slave-receiver)

3. A terminates the transfer

 Suppose Micro-controller A wants to receive info from micro-controller B

1. A (master) addresses B(slave)

2. A (master-receiver) receives data from B(slave-transmitter)

3. A terminates the transfer

4

set 9 -- 4

I2C Bit-Transfer

 One clock pulse is
generated for each data bit
that is transferred

 Data Validity

The data on the SDA line
must be stable during the
HIGH(1) period of the
clock. The data line(SDA)
can change data only
when the clock signal
(SCL) is LOW(0)

 Wired-and function

open-drain or open-
collector

5

set 9 -- 5

I2C START/STOP Conditions

 START condition: Signals begin of transfer (occupies the bus)

A HIGH to LOW transition on the SDA line while the SCL is HIGH

 STOP condition: Signals end of transfer (releases the bus)

A LOW to HIGH transition on the SDA line while the SCL is HIGH

 Both these are always generated by the Master

 Repeated START condition is allowed

Repeated start is used for changing the slave, or changing the direction of data
transfer (Send/Receive) for the same slave

6

set 9 -- 6

I2C Data Transfer
 Every byte on the SDA line must be 8-bits long

 Each byte must be followed by an acknowledgement from the receiver

 Data byte is transferred bit-wise with the MSB as the first bit sent

 A slave can force the master to wait by holding the clock line SCL LOW

7

set 9 -- 7

Acknowledgement Scheme

 The acknowledge-related clock-pulse is generated by the master

 The transmitter (master or slave) releases the SDA line i.e. SDA is HIGH for
the ACK clock pulse

 The receiver must pull-down the SDA line during the acknowledge clock
pulse (stable LOW) during the HIGH period of the clock pulse

8

set 9 -- 8

Acknowledgement Scheme

 The receiver is obliged to generate an acknowledge after each byte received.

 When a slave does not acknowledge slave address (when busy), it leaves the data
line HIGH. The master then generates either STOP or attempts repeated START.

 If a slave-receiver does ack the slave address, but some time later during the
transfer can not receive more data (this is done by leaving SDA HIGH during the
ack pulse), then the master either generates STOP or attempts repeated START.

 If a master-receiver is involved in a transfer, it must signal the end of data to the
slave-transmitter by not generating an ack on the last byte that was clocked out of
the slave. The slave-transmitter must release the data line to allow the master to
generate a STOP or repeated START condition.

9

set 9 -- 9

Data Transfer With 7-Bit Device Address

 After START condition (S), a slave address(7-bit) is sent.

 A read/write (R/W’) direction is then sent(8th bit)

 Data transfer occurs, and then always terminated by STOP condition.
However, repeated START conditions can occur.

10

set 9 -- 10

Master-Transmitter to Slave-Receiver Data Transfer

 In this, the transmission direction never changes. The set-up and transfer is
straight-forward

11

set 9 -- 11

Master-Receiver and Slave-Transmitter Data Transfer

 Master initiates the data transfer by generating the START condition
followed by the start byte (with read/write bit set to 1 i.e. read mode)

 After the first ack from the slave, the direction of data changes and the
master becomes receiver and slave transmitter.

 The STOP condition is still generated by the master (master sends not-ACK
before generating the STOP)

12

set 9 -- 12

Read and Write in the Same Data Transfer

 Change in direction of data transfer can happen by the master generating
another START condition (called the repeated START condition) with the
slave address repeated

 If the master was a receiver prior to the change, then the master sends a
not-ack (A’) before the repeated START condition

13

set 9 -- 13

7-Bit Addressing

 The addressing info is contained in the first byte after the START condition

 The first 7 bits contain the address and LSB contains the direction of
transfer(R/W’ : 0 = write;1= read)

 When an address is sent, each device compares the first seven bits and
considers itself addressed.

 A slave address can be made up of a fixed and a programmable part

PCF8575

14

set 9 -- 14

Multi-Master Clock Synchronization
 In the I2C bus, clock synchronization is performed using the wired-AND

 If at least one master clock goes from HIGH to LOW, then the SCL is held LOW
irrespective of the other masters’ clock.

The SCL line goes to a HIGH state only when all the master clocks are in HIGH.

 The synchronized clock is generated with its LOW period determined by the device
with the longest clock LOW period and its HIGH period determined by the one with
the shortest clock HIGH period.

15

set 9 -- 15

Multi-Master Arbitration Using the Clock Syn.
 If more than one device is capable of being a master, then an arbitration mechanism

is needed to choose the master that takes control of the bus

 Arbitration takes place on the SDA, while the SCL is at the HIGH line,

 the master which transmits a HIGH level,

another master is transmitting LOW level will switch off its DATA output stage because the
level on the bus does not correspond to its own level.

16

set 9 -- 16

I2C Conclusion

 Compared to other serial bus protocols like SPI and
Microwire

The pin (and connection) requirements are the least in I2C

The noise immunity is higher for I2C

There is a feedback to the the transmitter (Ack signal) for
conveying the success of the transfer

I2C now has fast and high speed modes of operation

17

New STM32 Project: oled

18

 I2C, USART2, USART3

19

 Copy ssd1306.c and fonts.c files to
C:\Users\limdj\STM32CubeIDE\workspace_1.1.0\
oled\Core\Src

 Copy ssd1306.h and fonts.h files
C:\Users\limdj\STM32CubeIDE\workspace_1.1.0\
oled\Core\Inc

20

main.c
/* USER CODE BEGIN Includes */

#include "ssd1306.h"

#include "fonts.h"

/* USER CODE END Includes */

/* USER CODE BEGIN 2 */

ssd1306_Init();

HAL_Delay(1000);

ssd1306_Fill(Black);

ssd1306_UpdateScreen();

HAL_Delay(1000);

ssd1306_SetCursor(0, 0);

ssd1306_WriteString("Hello World", Font_11x18, White);

ssd1306_SetCursor(0, 50);

ssd1306_WriteString("ARM Cortex-M3", Font_7x10, White);

ssd1306_UpdateScreen();

/* USER CODE END 2 */

21

/* USER CODE BEGIN WHILE */

int counter;

unsigned char string[10];

while (1)

{

/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */

string[0] = counter / 100 + 0x30;

string[1] = (counter % 100) / 10 + 0x30;

string[2] = (counter % 100) % 10 + 0x30;

string[3] = 0;

ssd1306_SetCursor(40, 20);

ssd1306_WriteString(string, Font_16x26, White);

counter++;

if (counter > 999) counter = 0;

ssd1306_UpdateScreen();

HAL_Delay(10);

}

/* USER CODE END 3 */

22

Logic Analyzer Capture

23

Logic Analyzer Capture

 ACK

24

Logic Analyzer Capture

