
Embedded Linux Architecture



Types of Operating Systems

 Real-Time Executive

 Monolithic Kernel

 Microkernel



Real-Time Executive

 For MMU-less processors

 The entire address space is flat or linear with no memory 

protection between the kernel and applications



Real-Time Executive

 the core kernel, kernel subsystems, and applications 

share the same address space.

 These operating systems have small memory and size 

footprint as both the OS and applications are bundled 

into a single image.

 real-time in nature because there is no overhead of 

system calls, message passing, or copying of data.

 because the OS provides no protection, all software 

running on the system should be foolproof.

 Reliability on real-time executives using the flat memory 

model was achieved by a rigorous testing process.



Monolithic Kernels

 Monolithic kernels have a distinction between the user 

and kernel space.

 When software runs in the user space normally it cannot 

access the system hardware nor can it execute 

privileged instructions. Using special entry points 

(provided by hardware), an application can enter the 

kernel mode from user space.

 The user space programs operate on a virtual address 

so that they cannot corrupt another application’s or the 

kernel’s memory.

 However, the kernel components share the same 

address space; so a badly written driver or module can 

cause the system to crash.



Monolithic Kernels

 the kernel and kernel submodules share the same 

address space and where the applications each have 

their private address spaces.



Monolithic Kernels

 Monolithic kernels can support a large application 

software base. Any fault in the application will cause only 

that application to misbehave without causing any 

system crash. Also applications can be added to a live 

system without bringing down the system. Most of the 

UNIX OSs are monolithic.



Microkernel

 Microkernels have been subjected to lots of research 

especially in the late 1980s and were considered to be 

the most superior with respect to OS design principles.

 The microkernel makes use of a small OS that provides 

the very basic service(scheduling, interrupt handling, 

message passing) and the rest of the kernel(file system, 

device drivers, networking stack) runs as applications.



Microkernel

 On the usage of MMU, the real-time kernels form one 

extreme with no usage of MMU whereas the 

microkernels are placed on the other end by providing 

kernel subsystems with individual address space. 

 The key to the microkernel is to come up with well-

defined APIs for communication with the OS as well as 

robust message-passing schemes.



Microkernel

 kernel subsystems such as network stack and file 

systems have private address space similar to 

applications.



Monolithic Kernel vs Micro Kernel



Three types of OS

 On one end of the spectrum we have the real-time kernel 

that provides no memory protection; this is done to make 

the system more real-time but at the cost of reliability.

 On the other end, the microkernel provides memory 

protection to individual kernel subsystems at the cost of 

complexity.

 Linux takes the middle path of monolithic kernels where 

the entire kernel operates on a single memory space.



Linux Kernel Architecture

 The hardware abstraction layer

 Memory manager

 Scheduler

 File system

 IO subsystem

 Networking subsystem

 IPC



Hardware Abstraction Layer (HAL)

 The hardware abstraction layer (HAL) virtualizes the 

platform hardware so that the different drivers can be 

ported easily on any hardware. The HAL is equivalent to 

the BSP provided on most of the RTOSs except that the 

BSP on commercial RTOSs normally has standard APIs 

that allow easy porting.

 Embedded processors (other than x86) supported on the 

Linux 2.6 kernel – MIPS, PowerPC, ARM, M68K, 

SuperH, etc.



Hardware supported by HAL

 Processor, cache, and MMU

 Setting up the memory map

 Exception and interrupt handling support

 DMA

 Timers

 System console

 Bus management

 Power management



Memory Manager

 The memory manager on Linux is responsible for 

controlling access to the hardware memory resources. 

The memory manager is responsible for providing 

dynamic memory to kernel subsystems such as drivers, 

file systems, and networking stack. 

 It also implements the software necessary to provide 

virtual memory to user applications. Each process in the 

Linux subsystem operates in its separate address space 

called the virtual address. By using virtual address, a 

process can corrupt neither another process’s nor the 

operating system’s memory.



Scheduler

 The Linux scheduler provides the multitasking 

capabilities and is evolving over the kernel releases with 

the aim of providing a deterministic scheduling policy.



Scheduler

 Kernel thread: These are processes that do not have a 

user context. They execute in the kernel space as long 

as they live.

 User process: Each user process has its own address 

space thanks to the virtual memory. They enter into the 

kernel mode when an interrupt, exception, or a system 

call is executed. Note that when a process enters the 

kernel mode, it uses a totally different stack. This is 

referred to as the kernel stack and each process has its 

own kernel stack.



Scheduler

 User thread: The threads are different execution entities 

that are mapped to a single user process. The user 

space threads share a common text, data, and heap 

space. They have separate stack addresses. Other 

resources such as open files and signal handlers are 

also shared across the threads.

 The 2.6 kernel has a totally new scheduler referred to as 

the O(1) scheduler that brings determinism into the 

scheduling policy. Also more real-time features such as 

the POSIX timers were added to the 2.6 kernel.



File System

 On Linux, the various file systems are managed by a 

layer called the VFS or the Virtual File System. The 

virtual file system provides a consistent view of data as 

stored on various devices on the system.

 Any Linux device, whether it’s an embedded system or a 

server, needs at least one file system. The Linux 

necessity of file systems stems from two facts.

 The applications have separate program images and hence they 

need to have storage space in a file system.

 All low-level devices too are accessed as files.



 It is necessary for every Linux system to have a master 

file system, the root file system. This gets mounted at 

system start-up. Later many more file systems can be 

mounted using this file system.

 Linux supports specialized file systems that are flash-

and ROM-based for embedded systems. Also there is 

support for NFS on Linux, which allows a file system on 

a host to be mounted on the embedded system.



IO Subsystem

 The IO subsystem on Linux provides a simple and 

uniform interface to onboard devices. Three kinds of 

devices are supported by the IO subsystem.

 Character devices for supporting sequential devices.

 Block devices for supporting randomly accessible devices. 

Block devices are essential for implementing file systems.

 Network devices that support a variety of link layer devices.



Networking Subsystems



IPC

 The interprocess communication on Linux includes 

signals (for asynchronous communication), pipes, and 

sockets as well as the System V IPC mechanisms such 

as shared memory, message queues, and semaphores. 

 The 2.6 kernel has the additional support for POSIX-type 

message queues.



User Space

 Program: This is the image of an application. It resides 

on a file system. When an application needs to be run, 

the image is loaded into memory and run. Note that 

because of virtual memory the entire process image is 

not loaded into memory but only the required memory 

pages are loaded.

 Virtual memory: This allows each process to have its 

own address space. Virtual memory allows for advanced 

features such as shared libraries. Each process has its 

own memory map in the virtual address space; this is 

unique for any process and is totally independent of the 

kernel memory map.

 System calls: These are entry points into the kernel so 

that the kernel can execute services on behalf of the 

application.



Linux Start-Up Sequence

 Boot loader phase: Typically this stage does the 

hardware initialization and testing, loads the kernel 

image, and transfers control to the Linux kernel.

 Kernel initialization phase: This stage does the 

platform-specific initialization, brings up the kernel 

subsystems, turns on multitasking, mounts the root file 

system, and jumps to user space.

 User- space initialization phase: Typically this phase 

brings up the services, does network initialization, and 

then issues a log-in prompt.



Boot Loader Phase

 Hardware Initialization

1. Configuring the CPU speed

2. Memory initialization, such as setting up the registers, clearing 

the memory, and determining the size of the onboard memory

3. Turning on the caches

4. Setting up the serial port for the boot console

5. Doing the hardware diagnostics or the POST (Power On Self-

Test diagnostics)



Boot Loader Phase

 Downloading Kernel Image and Initial Ram Disk

 The boot loader needs to locate the kernel image, which may be 

on the system flash or may be on the network. In either case, the 

image needs to be loaded into memory. 

 Setting Up Arguments

 Argument passing is a very powerful option supported by the 

Linux kernel. Linux provides a generic way to pass arguments to 

the kernel across all platforms. Typically the boot loader has to 

set up a memory area for argument passing, initialize it with the 

required data structures (that can be identified by the Linux 

kernel), and then fill them up with the required values.



Boot Loader Phase

 Jumping to Kernel Entry Point

 The kernel entry point is decided by the linker script when 

building the kernel (which is typically present in linker script in 

the architecture-specific directory). Once the boot loader jumps 

to the kernel entry point, its job is done and it is of no use. 



Kernel Start-Up

 CPU/Platform-Specific Initialization

 Subsystem Initialization

 This includes

• Scheduler initialization

• Memory manager initialization

• VFS initialization

 Note that most of the subsystem initialization is done in the 

start_kernel() function. At the end of this function, the kernel 

creates another process, the init process, to do the rest of the 

initialization (driver initialization, initcalls, mounting the root file 

system, and jumping to user space) and the current process 

becomes the idle process with process id of 0.



Kernel Start-Up

 Driver Initialization

 Mounting Root File System

 the root file system is the master file system using which other 

file systems can be mounted. Its mounting marks an important 

process in the booting stage as the kernel can start its transition 

to user space.

 There are three kinds of root file systems that are normally used 

on embedded systems:

• The initial ram disk

• Network-based file system using NFS

• Flash-based file system



Kernel Start-Up

 Doing Initcall and Freeing Initial Memory

 Moving to User Space

 The kernel that is executing in the context of the init process 

jumps to the user space by overlaying itself (using execve) with 

the executable image of a special program also referred to as init.

This executable normally resides in the root file system in the 

directory /sbin. Note that the user can specify the init program 

using a command line argument to the kernel.



User Space Initialization

 User space initialization is distribution dependent. The 

responsibility of the kernel ends with the transition to the 

init process. What the init process does and how it starts 

the services is dependent on the distribution.

 The /sbin/init Process and /etc/inittab

 The init process can be configured on any system using the 

inittab file, which typically resides in the /etc directory. init reads 

the inittab file and does the actions accordingly in a sequential 

manner.



/etc/inittab



/etc/init.d/rcS



/etc/init.d/rc.local



GNU Cross-Platform Toolchain

 Binutils: Binutils are a set of programs necessary for 

compilation/linking/ assembling and other debugging 

operations.

 GNU C compiler: The basic C compiler used for 

generating object code (both kernel and applications).

 GNU C library: This library implements the system call 

APIs such as open, read, and so on, and other support 

functions. All applications that are developed need to be 

linked against this base library.



GNU Cross-Platform Toolchain

 ARM: http://www.emdebian.org/

 PPC: http:// www.emdebian.org/

 MIPS: http://www.linux-mips.org/

 M68K: http://www.uclinux.org/



Target Name

 arm-linux: Support for ARM processors such as armV4, 

armv5t, and so on.

 mips-linux: Support for various MIPS core such as r3000, 

r4000, and so on.

 ppc-linux: Linux/PowerPC combination with support for 

various PPC chips.

 m68k-linux: This targets Linux running on the Motorola 

68k processor.


