
Introduction to Real-Time 
Operating Systems



GPOS vs RTOS

• General purpose operating systems
• Real-time operating systems



GPOS vs RTOS: Similarities

• Multitasking
• Resource management
• OS services to applications
• Abstracting the hardware



Characteristics of RTOS

• Reliability in embedded application
• Scale up or down ability
• Faster performance
• Reduced memory requirement
• Scheduling policies for real-time
• Diskless
• portability







Kernel Objects

• Help developers creates applications for 
real-time embedded systems



Scheduler

• Determine which task executes when
• Schedulable entities-a kernel object that 

can compete for execution on a system-> 
process, task

• Multitasking: many thread of execution 
appear to be running concurrently



Scheduler

• Context: the state of CPU registers
• Context switch
• When a new task is created, TCB(task 

control block) is also created
• TCB: system data structure





Scheduling Algorithms

• Preemptive priority-based scheduling
• Round-robin scheduling





• 256 priority levels
• 0: highest
• 256: lowest





Objects

• Tasks
• Semaphore: token-like objects for 

synchronization & mutual exclusion
• Message queue: buffer-like data structures



Common Real-Time Design 
Problems

• Concurrency
• Activity synchronization
• Data communication

• Developers combine basic kernel objects



Key Characteristics of RTOS

• Reliability
• Predictability
• Performance
• Compactness
• Scalability



Tasks



Defining a Task

• A task is an independent thread of 
execution that can compete with each 
other concurrent tasks for processor 
execution time

• Developer decompose applications into 
multiple concurrent tasks to optimize the 
handling of inputs and outputs within set 
time constraints



Task States

• Ready
• Running
• Blocked





Ready State

• Most kernels support more than one task 
per priority level

• Task-ready-list





Running State

• Can move to the blocked state
1. By making a call requesting an un 

available resource
2. By making a call requesting to wait for an 

event to occur
3. By making a call to delay



Blocked State

• Without blocked state, lower priority tasks 
could not run!

• CPU starvation occurs when higher priority 
tasks use all of the CPU execution time 
and lower priority tasks do not get to run.

• A task can only move to the blocked state 
by making a blocking call, requesting that 
some blocking condition be met.



Blocking Condition
(Unblocking Condition)

• A semaphore is released
• A message arrives
• A time delay expires



Typical Task Structures

• Run-to-completion tasks
• Endless-loop tasks



Run-to-Completion Tasks

• Application-level initialization task
• The application initialization task typically 

has a higher priority than the application 
tasks that it creates so that its initialization 
work is not preempted.



RunToCompletionTask()
{

initialize application
create ‘endless loop tasks’-lower priority
creates kernel objects
delete or suspend this task

}



Endless-Loop Tasks

• One or more blocking calls within the body 
of the loop



EndlessLoopTask()
{

initialization code
Loop Forever
{

body of loop
make one or more blocking calls

}
}



Synchronization,Communication 
and Concurrency

• Tasks synchronize and communicate by 
using intertask primitives (semaphores, 
message queues, signals, pipes)



Semaphores



Semaphore (Token)

• A kernel object
• One or more threads of execution can 

acquire or release for the purpose of 
synchronization or mutual exclusion



Semaphore

• Semaphore is like a key that allows a task 
to carry out some operation or to access a 
resource. (e.g. a key or keys to the lab)



Semaphore Count

• Semaphore (Token) count is initialized 
when created

• A task acquire the semaphore: count is 
decremented

• A task releases the semaphore: count is 
incremented

• Token count = 0 : a requesting task blocks



Binary Semaphore

• Value: 0 unavailable/empty
• Value: 1 available/full



Counting Semaphore



Mutual Exclusion (Mutex) 
Semaphore

• A special binary semaphore that supports 
ownership, recursive access, task deletion 
safety, priority inversion avoidance 
protocol.



Mutex Ownership
• Ownership of a mutex is gained when a 

task first locks the mutex by acquiring it.
• A task loses ownership of the mutex when 

it unlocks it by releasing it.

• Recursive locking: when a task requiring 
exclusive access to a shared resource 
calls one or more routines that also require 
access to the same resource.



Mutex

• Task Deletion Safety: While a task owns a 
mutex, the task cannot be deleted

• Priority inversion avoidance



Typical Semaphore Use

• Wait-and-Signal Synchronization



Wait-and-Signal Synchronization

• tWaitTask runs first
• tWaitTask makes a request to acquire the 

semaphore but blocked
• tSignalTask has a chance to run
• tSignalTask releases the semaphore
• tWaitTask unblocked and running



Wait-and-Signal Synchronization
tWaitTask()
{

…
Acquire binary semaphore
…

}
tSignalTask()
{

…
Release binary semaphore
…

}



Multiple-Task Wait_and_Signal 
Synchronization

• tSignalTask: lower priority



Multiple-Task Wait_and_Signal 
Synchronization

tWaitTask1()
{

Acquire binary semaphore
}
tWaitTask2()
{

…
}
tSignalTask()
{

Flush binary semaphore’s task-waiting list
}



Single Shared-Resource-Access 
Synchronization

• Danger: problem when the 3rd task release 
-> use mutex



Single Shared-Resource-Access 
Synchronization

tAccessTask()
{

Acquire binary semaphore
Read or write to shared resource
Release binary semaphore

}



Recursive Shared-Resource-
Access Synchronization

• tAccessTask calls -> Routine A -> Routine 
B : need to access to the same shared 
resource



Recursive Shared-Resource-
Access Synchronization

tAccessTask()
{

…
Acquire mutex
Access shared resource
Call RoutineA
Release mutex
…

}
RoutineA()
{

…
Acquire mutex
Access shared resource
Call RoutineB
Release mutex 
…

}

RoutineB()
{

…
Acquire mutex
Access shared resource
Call RoutineB
Release mutex 
…

}



Message Queues



Message Queues

• A message queue is a buffer-like object 
through which tasks and ISRs send and 
receive messages to communicate and 
synchronize with data

• It temporarily holds message from a 
sender until the intended receiver is ready 
to read them.





Message Queue Content

• For long message, use pointer



Typical Message Queue Use
• Non-interlocked, one-way data 

communication (loosely coupled)
• Not synchronized
• Does not require ACK


