
Real-Time & Linux



Real-Time Systems

 Hard real-time systems: A hard real-time system needs 

a guaranteed worst case response time. The entire 

system including OS, applications, HW, and so on must 

be designed to guarantee that response requirements 

are met. It doesn’t matter what the timings requirements 

are to be hard real-time (microseconds, milliseconds, 

etc.), just that they must be met every time. Failure to do 

so can lead to drastic consequences such as loss of life. 

Some examples of hard real-time systems include 

defense systems, flight and vehicle control systems, 

satellite systems, data acquisition systems, medical 

instrumentation, controlling space shuttles or nuclear 

reactors, gaming systems, and so on.



Real-Time Systems

 Soft real-time systems: In soft real-time systems it is 

not necessary for system success that every time 

constraint be met. In the above DVD player example, if 

the decoder is not able to meet the timing requirement 

once in an hour, it’s ok. But frequent deadline misses by 

the decoder in a short period of time can leave an 

impression that the system has failed. Some examples 

are multimedia applications, VoIP, CE devices, audio or 

video streaming, and so on.



Real-Time Operating System

 POSIX 1003.1b defines real-time for operating systems 

as the ability of the operating system to provide a 

required level of service in a bounded response time.

 Multitasking/multithreading: An RTOS should support 

multitasking and multithreading.

 Priorities: The tasks should have priorities. Critical and 

time-bound functionalities should be processed by tasks 

having higher priorities.

 Priority inheritance: An RTOS should have a mechanism 

to support priority inheritance.



Real-Time Operating System

 Preemption: An RTOS should be preemptive; that is, 

when a task of higher priority is ready to run, it should 

preempt a lower-priority task.

 Interrupt latency: Interrupt latency is the time taken 

between a hardware interrupt being raised and the 

interrupt handler being called. An RTOS should have 

predictable interrupt latencies and preferably be as small 

as possible.

 Scheduler latency: This is the time difference when a 

task becomes runnable and actually starts running. An 

RTOS should have deterministic scheduler latencies.



Real-Time Operating System

 Interprocess communication and synchronization: The 

most popular form of communication between tasks in 

an embedded system is message passing. An RTOS 

should offer a constant time message-passing 

mechanism. Also it should provide semaphores and 

mutexes for synchronization purposes.

 Dynamic memory allocation: An RTOS should provide 

fixed-time memory allocation routines for applications.



Linux and Real-Time

 Linux evolved as a general-purpose operating system. 

The main reasons stated for the non–real-time nature of 

Linux were:

 High interrupt latency

 High scheduler latency due to nonpreemptive nature of the 

kernel

 Various OS services such as IPC mechanisms, memory 

allocation, and the like do not have deterministic timing behavior.

 Other features such as virtual memory and system calls also 

make Linux undeterministic in its response.



Linux and Real-Time

 The key difference between any general-purpose 

operating system like Linux and a hard real-time OS is 

the deterministic timing behavior of all the OS services in 

an RTOS. By deterministic timing we mean that any 

latency involved or time taken by any OS service should 

be well bounded.



 kernel response time is the amount of time that elapses 

from when the interrupt is raised to when the task that 

was waiting for I/O to complete runs. As you can see 

from the example there are four components to the 

kernel response time.

 Interrupt latency: Interrupt latency is the time difference between 

a device raising an interrupt and the corresponding handler 

being called.

 ISR duration: the time needed by an interrupt handler to execute.

 Scheduler latency: Scheduler latency is the amount of time that 

elapses between the interrupt service routine completing and the 

scheduling function being run.

 Scheduler duration: This is the time taken by the scheduler 

function to select the next task to run and context switch to it.



Interrupt Latency

 interrupt latency is one of the major factors contributing 

to nondeterministic system response times. Some of the 

common causes for high-interrupt latency.



ISR Duration

 ISR duration is the time taken by an interrupt handler to 

execute and it is under the control of the ISR writer. 

However nondeterminism could arise if an ISR has a 

softirq component also. In order to have less interrupt 

latency, an interrupt handler needs to do minimal work 

(such as copying some IO buffers to the system RAM) 

and the rest of the work (such as processing of the IO 

data, waking up tasks) should be done outside the 

interrupt handler. So an interrupt handler has been split 

into two portions: the top half that does the minimal job 

and the softirq that does the rest of the processing. The 

latency involved in softirq processing is unbounded. 



ISR Duration

 The following latencies are involved during softirq

processing.

 A softirq runs with interrupts enabled and can be interrupted by a 

hard IRQ (except at some critical sections).

 A softirq can also be executed in the context of a kernel daemon 

ksoftirqd, which is a non–real-time thread.

 Thus you should make sure that the ISR of your real-

time device does not have any softirq component and all 

the work should be performed in the top half only.



Scheduler Latency

 Among all the latencies discussed, scheduler latency is 

the major contributor to the increased kernel response 

time. Some of the reasons for large scheduler latencies 

in the earlier Linux 2.4 kernel are as follows.

 Nonpreemptive nature of the kernel: Scheduling decisions are 

made by the kernel in the places such as return from interrupt or 

return from system call, and so on. However, if the current 

process is running in kernel mode (i.e., executing a system call), 

the decision is postponed until the process comes back to user 

mode. This means that a high-priority process cannot preempt a 

low-priority process if the latter is executing a system call. Thus, 

because of the nonpreemptive nature of kernel mode execution, 

scheduling latencies may vary from tens to hundreds of 

milliseconds depending on the duration of a system call.



Scheduler Latency

 Interrupt disable times: A scheduling decision is made as early 

as the return from the next timer interrupt. If the global interrupts 

are disabled for a long time, the timer interrupt is delayed thus 

increasing scheduling latency.



Scheduler Latency

 Kernel Preemption

 It was observed that it’s safe to preempt a process executing in 

the kernel mode if it is not in any critical section protected using 

spinlock. This property was exploited by embedded Linux vendor 

MontaVista and they introduced the kernel preemption patch. 

The patch was incorporated in the mainstream kernel during the 

2.5 kernel development and is now maintained by Robert Love.



Scheduler Latency

 Kernel Preemption



Scheduler Duration

 the scheduler duration is the time taken by the scheduler 

to select the next task for execution and context switch 

to it. The Linux scheduler like the rest of the system was 

written originally for the desktop and it remained almost 

unchanged except for the addition of the POSIX realtime

capabilities. The major drawback of the scheduler was 

its nondeterministic behavior: The scheduler duration 

increased linearly with the number of tasks in the system, 

the reason being that all the tasks including real-time 

tasks are maintained in a single run queue and every 

time the scheduler was called it went through the entire 

run queue to find the highest-priority task.



Scheduler Duration

 Making the Scheduler Real-Time: The O(1) Scheduler



User-Space Real-Time

 The IEEE 1003.1b (or POSIX.1b) standard defines 

interfaces to support portability of applications with real-

time requirements.

 Fixed-priority scheduling with real-time scheduling classes

 Memory locking

 POSIX message queues

 POSIX shared memory

 Real-time signals

 POSIX semaphores

 POSIX clocks and timers

 Asynchronous I/O (AIO)



Process Scheduling

 The scheduler for the 2.6 kernel. There are three basic 

parameters to define a real-time task on Linux:

 Scheduling class

 Process priority

 Timeslice



Process Scheduling

 Scheduling Class

 SCHED_FIFO: First-in first-out real-time scheduling policy. The 

scheduling algorithm does not use any timeslicing. A 

SCHED_FIFO process runs to completion unless it is blocked by 

an I/O request, preempted by a higherpriority process, or it 

voluntarily relinquishes the CPU. The following points should be 

noted.

• A SCHED_FIFO process that has been preempted by another 

process of higher priority stays at the head of the list for its priority 

and will resume execution as soon as all processes of higher priority 

are blocked again.

• When a SCHED_FIFO process is ready to run (e.g., after waking 

from a blocking operation), it will be inserted at the end of the list of 

its priority.

• A call to sched_setscheduler or sched_setparam will put the 

SCHED_FIFO process at the start of the list. As a consequence, it 

may preempt the currently running process if its priority is the same 

as that of the running process.Timeslice



Process Scheduling

 Scheduling Class

 SCHED_RR: Round-robin real-time scheduling policy. It’s similar 

to SCHED_FIFO with the only difference being that the 

SCHED_RR process is allowed to run for a maximum time 

quantum. If a SCHED_RR process exhausts its time quantum, it 

is put at the end of the list of its priority. A SCHED_RR process 

that has been preempted by a higher-priority process will 

complete the unexpired portion of its time quantum after 

resuming

 SCHED_OTHER: Standard Linux time-sharing scheduler for 

non–real-time processes.



Process Scheduling

 Priority



Process Scheduling

 Timeslice

 Timeslice is valid only for SCHED_RR processes. SCHED_FIFO 

processes can be thought of as having an infinite timeslice. 

Linux sets a minimum timeslice for a process to 10 msec, default 

timeslice to 100 msec, and maximum timeslice to 200 msec. 

Timeslices get refilled after they expire.

 All SCHED_RR processes run at the default timeslice of 100 

msec as they normally have nice 0.

 A nice –20 SCHED_RR process will get a timeslice of 200 msec

and a nice +19 SCHED_RR process will get a timeslice of 10 

msec. Thus the nice value can be used to control timeslice

allocation for SCHED_RR processes.

 The lower the nice value (i.e., higher priority), the higher the 

timeslice is.



Process Scheduling

 POSIX.1b Scheduling Functions



sched.c(1)
#include <sched.h>

int main(){

struct sched_param param, new_param;

/*

* A process starts with the default policy SCHED_OTHER unless

* it's spawned by a SCHED_RR or SCHED_FIFO process. 

*/

printf("start policy = %d\n", sched_getscheduler(0));

/* output -> start policy = 0 */

/* 0 <- SCHED_OTHER, 1 <- SCHED_FIFO, 2 <- SCHED_RR */



sched.c(2)
/*

* Create a SCHED_FIFO process running with average priority

*/

param.sched_priority = (sched_get_priority_min(SCHED_FIFO) + 

sched_get_priority_max(SCHED_FIFO))/2;

printf("max priority = %d, min priority = %d, my priority = %d\n",

sched_get_priority_max(SCHED_FIFO), 

sched_get_priority_min(SCHED_FIFO), param.sched_priority);

/* output -> max priority = 99, min priority = 1, my priority = 50 */

if (sched_setscheduler(0, SCHED_FIFO, &param) != 0){

perror("sched_setscheduler failed\n");

return;

}

/*

* perform time critical operation

*



sched.c(3)
* Lets give some other RT thread / process a chance to run. Note that call to sched_yield will 

* put the current process at the end of its priority queue. If there are no other process in the queue

* then the call will have no effect

*/ 

sched_yield();

/*

* You can also change the priority at run time

*/

param.sched_priority = sched_get_priority_max(SCHED_FIFO);

if (sched_setparam(0, &param) != 0){

perror("sched_setparam failed\n");

return;

}

sched_getparam(0, &new_param);

printf("I am running at priority %d\n", new_param.sched_priority);

/* output -> I am running at priority 99 */

return ;

}



sched_rr.c(1)
#include <sched.h>

int main(){

struct sched_param param;

struct timespec ts;

param.sched_priority = sched_get_priority_max(SCHED_RR);

/* 

* need maximum timeslice

*/

nice(-20);

sched_setscheduler(0, SCHED_RR, &param);

sched_rr_get_interval(0, &ts);

printf ("max timeslice = %d msec\n", ts.tv_nsec/1000000);

/* output -> max timeslice = 199 msec */



sched_rr.c(2)

/*

* Need minimum timeslice. Also note the argument to nice represents 'increment' and not 

* absolute value. Thus we are doing nice(39) to make it running at nice priority +19

*/

nice(39); 

sched_setscheduler(0, SCHED_RR, &param);

sched_rr_get_interval(0, &ts);

printf ("min timeslice = %d", ts.tv_nsec/1000000);

/* output -> min timeslice = 9 msec */

return ;

}


