
®

IBM Software Group

© IBM Corporation

Essentials of IBM® Rational® Rhapsody® v7.5 for Software

Engineers (C++)

Basic Rational Rhapsody

2

Exercise 1 : Hello World

3

Start Rhapsody in C++

$ cd ~/Rhapsody753

$./RhapsodyInC++

4

Creating a Project

 New from File menu

5

Select the working directory

6

Browser

 The browser shows you everything that is in the model.

 Note that Rational Rhapsody creates an Object Model
Diagram (OMD).

Browser

Object

model

diagram

7

Drawing a class

 In this Object Model Diagram, click the Class icon
to draw a class named Display.

Expand the

browser to see

that the class

Display also

appears in the

browser.

Show/Hide Drawing

Toolbar

8

Remove from View / Delete from model

 Two ways of deleting a class
Remove the class from the view

(this is what the Delete key does).

Delete the class from the model.

 If you use the delete key or
select Remove from View,
then the class Display is just
removed from this diagram,
but remains in the browser.

 If you select Delete from
Model, then you must confirm
with Yes in order to remove
the class from the entire model.

9

Adding a constructor

 The simplest way to add a
constructor is to right-click on
the class and choose
Add New > Constructor.

 You do not need any
constructor arguments;
click OK.

Constructors may also be
added through the
featuresOperations tab.
Click New and select
Constructor.

10

Display options

 You would expect to see the
constructor shown on the class
on the Object Model Diagram.

 You can control what gets
displayed on this view of the
class by using Display Options.

 Right-click Display class and
select Display Options.

Set the options to display All
attributes and All operations.

11

Display constructor

You should be able to see the constructor is now
shown in both the browser and the OMD (object
model diagram).

Constructor

12

Adding an implementation

 Select the Display constructor in the browser and
double-click to open the features window.

 Select the Implementation tab and enter the
following:

cout << “Hello World” << endl;

If you are not using Visual C++

6.0, then you should add the

std namespace, for example,
std::cout << “Hello

World” << std::endl;

Or, set the property

CPP_CG::Class::Implementati
onProlog to using

namespace std;.

13

Adding an implementation

 Display class를더블클릭하고 Properties 탭을
선택한후 View All로바꿈

If you are not using Visual C++ 6.0, then you should add the std namespace, for example,
std::cout << “Hello World” << std::endl; Or, set the property

CPP_CG::Class::ImplementationProlog to using namespace std;.

14

 CPP_CG의 Class 항목에서 ImplementationProlog에
아래와같이입력

15

Adding an implementation

앞의과정이번거로울경우 Ubuntu에서는아래와
같이입력

또는아래와같이입력해도가능. Ubuntu에서는
#include <stdio.h> 가없어도컴파일이됨

std::cout << “Hello World” << std::endl;

printf(“Hello World\n\r”);

16

#include <iostream>

Since you have used cout,
you must add an include
of the iostream header to
the Display class.

 In the browser, select the
Display class and double-
click to bring up the
features.
Select the Properties tab

Ensure that the Common
View is selected

Enter <iostream> into the
“ImpIncludes” property.

ImpIncludes is an abbreviation for Implementation Includes.

17

Renaming a component

 In order to generate code, you must first create a
component.

 Expand the components in the browser and rename
the existing component called DefaultComponent to
Test. Also name the Directory to Test.

Executable

18

Test component

Now expand Configurations and rename the
DefaultConfig to Release.

19

Initial instance

 Select the
Initialization tab,
expand the Default
package, and select
the Display class.

 The main will create an
initial instance of the
Display class.

20

Settings

 You need to select an
environment so that
Rational Rhapsody
knows how to create
an appropriate
Makefile.

 Select the Settings tab.

 Select the appropriate
environment, for
example: Linux.

You will learn about the

many other settings later.

21

Renaming the OMD

 Expand the Object Model Diagrams in the browser.
Right-click the Object Model Diagram Model1 to
invoke the features dialog.

 Rename the diagram from Model1 to Overview.

22

Generating code

 You are now ready to generate code.

Save the model.

Select Generate/Make/Run.

Click Yes to the question:

23

Handling errors

 If there are errors during the compilation, double-click
the relevant line to find out where the error occurred.

24

Hello World

 You should see the following:

 Before continuing, make sure you stop the
executable by one of the following methods:

Closing the console window.

Using the Stop Make / Execution button.

Ctrl+Break.

25

Generated files

 The generated files are located in the following
directory:

Display class

Main

Executable

Makefile

26

Editing the code

 You can edit the generated files
from within Rational Rhapsody.

 Select the Display class, right-click,
and select Edit Code.

 Both the implementation (.cpp) and
specification (.h) are shown in
tabbed windows.

27

Modifying the code
 You can modify the generated code.

 In the Display.cpp file, change the implementation to
print out Constructed instead of Hello World.

 Transfer the focus back to another window to
roundtrip the modifications back into the model.

 Note that the model has been updated automatically.

 In general, the roundtripping works very well, but

beware not everything can be roundtripped.

28

Displaying the Main and Make

 The Main and Makefile can be displayed by simply
double-clicking the hyperlinks:

29

Project files

Generated code

AutoSave

The model

Project workspace

30

Extended exercise

 You can customize Rational
Rhapsody to get quick access to the
location of the current project.

 Select Tools > Customize.

31

Customize

 Click to enter a new entry
Explore to the Tools menu.

 Set the Command to
explorer.

 Set Arguments to .

 Click OK.

 Select Tools > Explore.

32

Exercise 2: Count down

33

Copying a project

Select File > Save As.

Press to select the upper folder.

Press to create a new folder.

Rename New Folder to
CountDown.

Select the new folder CountDown.

Save the project as
CountDown.rpy.

The new CountDown project is
opened in Rational Rhapsody with
the previous workspace preserved.

Each time there is an auto-save, Rational

Rhapsody only saves just what has changed

since the last auto-save.

34

Loading a project

 Choose one of the following ways to open a project:

Start Rational Rhapsody and select File > Open.

Or double-click on the file.

Or start Rational Rhapsody and drag the file
into Rational Rhapsody.

Or use Open Project in the Welcome screen.

The Rhapsody.ini file determines which Rational Rhapsody (C / C++ / J / Ada)

will be opened on double-clicking the .rpy file.

35

Adding an attribute

 To add an attribute, double-click on the Display class
to bring up the features and select the Attributes tab.

 Click New to add an attribute count of type int.

 Set the initial value to 0.

36

Generated code for an attribute

Click Save then edit the code for
the Display class so you can examine
the code.

Accessor

Mutator

Initial Value

Protected attribute

37

What are accessors and mutators?

 By default, all attribute data members in Rational
Rhapsody are protected.

 If other classes need access to these attributes, then
they must use an Accessor, for example, getCount()
or Mutator, for example, setCount().

 This allows the designer of a class, the freedom to
change the type of an attribute without having to alert
all users of the class. The designer would just need to
modify the accessor and mutator.

 In most cases, attributes do not need accessors or
mutators; you will see later how to stop them being
generated.

38

Attribute visibility

 Changing the Visibility in the Attribute features dialog
changes the mutator and accessor visibility (not the
data member visibility).

39

Adding an operation

Using the features for the Display class, select the
Operations tab > Primitive Operation.

Add a new primitive operation called print.

40

Arguments

 Double-click Print to open the features for the print
operation.

 Select the Arguments tab.

 Add an argument n of type int.

41

Adding implementation

Select the Implementation tab for the print operation
and add:

cout << “Count = “ << n << endl;

42

Another print operation

 In a similar way, add another operation called print,
this time with an argument s of type char* and with
implementation:

cout << s << endl;

Set the argument type before setting the name.

This avoids a conflict where the two print

operations have identical signatures.

43

Operation isDone()

Add another operation called isDone that returns a
bool and has the following implementation:

return (0==count);

By typing 0==count instead of

count==0, enables the compiler to

detect the common error of where =

is typed instead of ==.

44

Active Code View

 Select View > Active Code View.

 The active code view is context
sensitive and is automatically updated
as the model is changed. The window
also changes dynamically to show the
generated code for the highlighted
model element.

Note that although leaving the active

code view always open is useful, it

does slow down model manipulation

since the code will get regenerated

anytime any model element gets

modified.

45

Using the print operation

 In the Active Code View,
change the code for the
constructor to use the print
operation.

Make sure you have selected
the Implementation.

 Change the focus to another window such as the
browser and check that this modification has been
automatically round-tripped.

 Save the changes.

 Generate / Make / Run.

46

Adding a statechart

 You would like to get the Display class to count down
from 10 to 0 in intervals of 200ms.

 To do this, you need to give some behavior to the
class. You can do this by adding a statechart.

 Right-Click the Display class and select Add New >
Statechart.

47

Draw a simple statechart

Action

Trigger

Guard

Transition

State

Default

transition

48

Transitions

 Once a transition has been drawn, there are two ways
in which to enter information:

In text format - example: [isDone()]/print(“Done”);

By the features of the transition (activated by double-
clicking or right-clicking on the transition).

An empty line forces the action

to appear on a new line.

Ctrl+Enter closes

the entry field.

49

Timer mechanism

 A timer is provided that can be used within the
statecharts.

 tm(200) acts as an event that will be taken 200ms
after the state has been entered.

 When entering into the state, the timer will be started.

 When exiting from the state, the timer will be stopped.

The timer uses the

OS Tick and only

generates timeouts

that are a multiple

of ticks.

50

Timeouts

 If you have a system tick of say 20ms and you ask
for a timeout of 65ms, then the resulting timeout will
actually be between 80ms and 100ms, depending
on when the timeout is started relative to the
system tick.

System tick

20ms

80ms ≤ Timeout ≤ 100ms

Start timeout End timeout

time

If precise timeouts are required, then it is recommended you

use a hardware timer in combination with triggered operations.

51

Counting down

 Save

 Generate / Make / Run

Do NOT forget to close this window, before

doing another Generate / Make / Run.

Constructor

Default Transition

52

 Now that the Display class is Reactive

A reactive class is one that reacts to receiving events or
timeouts.

Identified by symbol in the browser and the OMD.

 Also note that the Statechart appears in the browser.

Statechart symbol

53

Use the Active Code View to examine the generated
code for the Display class.

Generated code: display.h

Framework includes

Framework class

Thread on

which to wait

Note that the Display class inherits from OMReactive, which is

one of the framework base classes. This is a class that simply

waits for timeouts or events. When it receives a timeout or an

event, it calls the rootState_processEvent() operation.

54

Generated code: display.cpp

 Display::Display(IOxfActive* theActiveContext)
The constructor needs to know on which thread to wait.

 Display::initStatechart()
Called by the constructor to initialize the attributes used to

manage the Statechart.

 Display::startBehavior()
Kicks off the behavior of the Statechart, invokes the

rootState_entDef() via OXF calling
OMReactive::startBehavior().
Typically invoked from outside after construction completed.

 Display::rootState_entDef()
Called by OMReactive::startBehavior() to take the initial

default transition.

 Display::rootState_processEvent()
Called though OXF operation OMReactive::processEvent()

whenever the object receives an event or timeout.

55

 Change the statechart implementation

Select the features for the configuration
Release.

Select the Settings tab and set Statechart
Implementation from Flat to Reusable.

Save / Generate / Examine code.

 The Rational Rhapsody framework allows two
ways of implementing statecharts:

Reusable is based on the state design pattern where each state is an
object.

 Results in faster execution and if a lot of statecharts are inherited,
can result in smaller code.

Flat uses a switch statement.

 Results in less code that is easier to read, but is slower.

Statechart implementation

56

Extended exercise

 Experiment with the line shape of transitions.

57

Design level debugging

 Up to now, you have generated code and executed it,
hoping that it works. However, as the model gets
more and more complicated you need to validate the
model.

 From now on, you are going to validate the model by
doing design level debugging, this is known as
Animation.

58

Animation

 Create a configuration by
copying the Release
configuration:

Press Ctrl and drag the
Release configuration onto
the Configurations folder.

Rename the new
configuration Debug.

 Set the Instrumentation
Mode to Animation.

59

Multiple configurations

 Now that you have more than one configuration, you
must select which one you want to use.

 There are two methods:

Right-click the configuration
and select
Set as Active Configuration.

Select the configuration
using the pull-down box.

60

Animating

Make sure the active configuration is Debug before
doing Save then Generate / Make / Run.

Run will cause the Animation toolbar to be displayed.

61

Animation Toolbar

 Automatically appears when an executable model is run and
instrumentation is set to Animation.

To display or hide during animation session, select View > Toolbars >
Animation.

 For detailed button information, select Help > Help Topics
and search on animation toolbar.

For example, grayed out (disabled) Thread button indicates single-
threaded application.

62

Starting the animation

 Click the Go Step button.

Note that the Display() constructor appears in the Call
Stack.

 Continue to Go Step until the Executable is Idle
message appears in the Animation window.

63

Class Instance

Browser contains an instance of the Display class.

Right-click the instance and select Features.

Note that the attribute count has been initialized to 10.

64

Statechart Instance

 Right-click the instance and select Open Instance
Statechart.

Highlighted state indicates the
current state of the model.

 If you do not see a highlighted

state, you may be looking at the

statechart of the class (design)

rather than the statechart of the

instance (runtime).

Default transition has also been
triggered.

 Started will have been

printed to the display.

65

Go Idle / Go

Click Go Idle to advance to next timeout.
The executed transition chain in statechart is highlighted.

 Value for count is
printed to display.

 Condition is
checked for
is done.

 Not done so value
of count is
decremented.

Click Go and
watch the animation
until the instance is
destroyed.

Exit the animation.

66

Destructor

 Add a Destructor to the Display class.

 Add implementation print (“Destroyed”);

 Save then Generate / Make / Run.

Make sure you enter the code

into the Implementation and not

the Description field.

67

Sequence diagrams

 From the browser, create a new sequence diagram
called execution.

This sequence diagram will be used to capture what
happens in execution.

Operation Mode will be discussed later but for this example,
it does not matter if Analysis or Design is selected.

68

Adding instances

 Add a System Border to the sequence diagram.

 Drag the Display class from the browser onto the sequence
diagram.

69

Drawing a sequence diagram

Normally, you would describe an actual scenario
similar to this one here, however in this case, you are
more interested in capturing what actually happens.

For the purpose of

this training, you only

need the system

border and the

Display instance line.

There is no need to

add any operations.

70

Animated sequence diagrams

 Start the animation and click
Go.

 If a sequence diagram is open,
then Rational Rhapsody
creates a new animated
sequence diagram based on
the execution.

Note that the animated sequence
diagram captures operations,
timeouts, and states.

71

Extended exercise I

 Rational Rhapsody can
display the return value on
animated sequence
diagrams. To do so, you
must use a macro
OM_RETURN.

 In the implementation of the
operation isDone(), replace
return with OM_RETURN.

72

Extended exercise II

 Try adding an extra state pausing. Then you will
see the instance changing states.

73

Properties

 There are many properties that allow customization of
the tool and the generated code.

 Properties can be set once and for all by modifying
the site.prp file in the Rhapsody\7.5\Share\Properties
directory.

 The factory.prp and factoryC++.prp files contain all
the Rational Rhapsody properties.

It is recommended you modify the

site.prp or siteC++.prp files rather than

the factory.prp and factoryC++.prp files.

To do so, it is easiest to copy and paste

from these files into the site.prp or

siteC++.prp file.

74

Properties hierarchy

If a stereotype is

applied to an

element, a property

is assigned to that

stereotype takes

precedence over the

element’s property.

factory.prp

site.prpproject

configuration

package

class

operation/attribute/
relation/type/…

component

factoryC++.prp

SiteC++.prp

profile

75

Project properties

Bring up the Features for the CountDown project and
select the Properties tab.

76

Properties view

 There are a very large number of properties which can
be used to customize the tool and the generated code.

 In order to facilitate access to these properties, there
are several views that can be applied to the properties.

 For this training course, you use the most common
properties which can be seen using the Common view.

It is relatively easy to

modify the list of

properties that can be

seen in the Common

view.

77

Properties views

 There are several useful views of the Properties:

A user defined list of the most

commonly accessed

properties

Properties that have been

overridden for the currently

selected element & any

‘parent’ overrides

Only properties that have

been overridden for the

currently selected element

Properties filtered by

some keyword

78

Useful property

 One useful property is
General:Graphics:MaintainWindowContent.

 Setting this property means that if the size of the
window is changed, then the view of the contents
changes proportionally.

 Set this property.

Once a property has been

modified it is highlighted. To

restore the default, right-click

on the property and select

Un-override.

Note also the description is

displayed for the selected

property.

79

Overridden properties

 Select View Overridden.

This shows just the

properties that have been

modified.

80

General:graphics:MaintainWindowContent

Once this property has been set, changing the size of
a window should keep the same view:

You need to close any open windows and then

reopen them after setting this property.

81

Accessors and mutators

 If accessors and mutators
are not needed for
attributes, then properties
can be set to stop their
generation.

 Set these two properties
so that ALL attributes in
the project will have
neither an accessor nor a
mutator.

82

Overridden properties

 For the attribute count, you want an accessor.

 Selecting the overridden filter shows that the
AccessorGenerate and MutatorGenerate properties
have been overridden higher up in the property
hierarchy.

 Select the count attribute and override the property:
AccessorGenerate.

83

Locally overridden properties

 Select the View Locally Overridden filter to show
that just the AccessorGenerate property has been set
locally.

 Generate code and check that there is just an

accessor for the attribute count.

84

Property filter

A customized view of the
properties can be created by
using the Filter view for example:

85

Extended exercise

 Experiment with some of the properties such as:

CG:CGGeneral:GeneratedCodeInBrowser

 You must regenerate the code after setting this
property.

86

Formatting individual items

 Line Colors, Fill Colors, Fonts, etc of
selected element(s) can all be
formatted by right clicking and selecting
Format.

87

Advanced drawing capabilities

 These advanced drawing capabilities are common to
most diagrams:

Turn grid on/off

Snap to grid

Show rulers
Make item

same size

Align items to

common edge

Give items same

spacing size

Stamp mode -

use when drawing

same items

repeatedly

88

Aligning items to common edge

A pivot selection mechanism is used for aligning,
sizing and spacing:

2. Select the pivot class by holding Ctrl and selecting1. Select by area

3. Choosing

align left,

aligns all

classes to

the class

(“class_4”)

89

Site.prp / SiteC++.prp

 Adding new environments is done via the file
siteC++.prp.

 Each organization or team may want to always set
certain properties for all of their Rational Rhapsody
projects. To do this, set these properties for every
Rational Rhapsody project by putting them into the
file site.prp .

 These files can be found in the \Share\Properties
directory.

90

Exercise 2A: Count down with LCD Display

 First, try to run the Count down application
on the embedded target as it is.

 Then, include the code accessing LCD
display.

 You need to prepare the hardware interface
code. Then, combine it with the model code.

 Model code + legacy code

91

New Configuration

 Right click Configurations and Add New
Configurations

 Change the name to MontaVista

 Right click and Set as Active Configurations

92

Open Feature Window for MontaVista Configuration

 Environment: MontaVista

93

Initial instances

 Check Display

94

Build

 Generate
Configuration Main
and Make files

 Generate
Configuration

 Build Configuration

 Check no error

95

 Copy executable file to ~/nfsroot folder

96

cd command with a long path name

 Move the mouse cursor to the menu bar

 Select Location from Go menu

97

cd command with a long path name

 Copy and paste to the Terminal window

98

Run on the target

99

Run on the target with animation

 Change to Animation, build, and copy

100

Run on the target with animation

101

Copy and modify lcd1602_test.c(1)

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <string.h>

int fd;

void initLCD(void)

{

fd=open("/dev/lcd1602",O_RDWR);

if (fd < 0) {

printf("Device open error : %s\n","/dev/lcd1602");

exit(1);

}

}

102

Copy and modify lcd1602_test.c(2)

void displayLCD(int count)

{

char wbuf[30];

wbuf[0] = count / 10 + 0x30;

wbuf[1] = count % 10 + 0x30;

for (int i=2;i<15;i++) wbuf[i]=' ';

wbuf[15] = 0x0;

write(fd, wbuf, strlen(wbuf));

}

103

Add Hardware Interface Code

 Right Click Test
Component and Select
Add New “File”

104

 Double click a new file and change Name to “lcd1602”
and Type to Implementation

105

 Double click lcd1602.cpp and select the tab
“Elements”.

 Then click New Text Element button

106

 Open the text editor

107

 Paste the code and click OK

108

이미입력된파일을수정할경우:Open the text editor

109

Open the driver

110

Call Interface Routine

111

Include extern (function prototype)

 Open Display class Feature window and select
Properties

112

Load the driver and run on the target

113

Exercise 3: Stopwatch Project

114

Create a new project

115

 Right click Packages and Add New Package

 Change the name to StopwatchPkg

116

 Right click StopwatchPkg and Add New-Diagrams-
Object Model Diagram

 Change the name to StopwatchOMD

117

 Select Object in Diagram Tools

 Draw three objects, Button, Timer, Display

118

 Select Link in Diagram Tools and draw links

119

 Double click the link between Button and Timer

 Click Association change button

120

 Change Both Ends to End itsTimer

121

 Right click the link and change Display options

122

 Repeat the same for the link between Timer and
Display

123

 Select Button object and right click

 Add New-Statechart

124

 Select State and draw states.

125

 Select Transition and draw

 Double click the transition

 Type in Trigger: evPress

 Type in Action: Timer.GEN(evStartStop);

126

 Complete the statechart

127

 Doble click Display object and open Feature window

 Select Operations Tab and press New

 Select Primitive Operations and name print

128

 Double click print operation

 Select Arguments Tab and add arguments: min, sec.

 Select Implementation and type in code

129

 Double click Timer object

 Select Attributes Tab

 Add attributes(seconds, minutes)

130

 Add operations(print, tick, reset) in Timer object

131

 Double click print operation

 Add Implementations

132

 Double click tick operation

 Add Implementations

133

Timer attributes

 Double click reset operation

 Add Implementations

134

Statechart in Timer

 Right click Timer and Add New-Statechart

135

Object Model Diagram

 Stopwatch OMD

136

Generate and build

 Change component and
configuration names

 Generate and build

137

138

139

140

 Right click and Generate Event

141

 Generate evPress and evRelease within 3 seconds

142

Exercise 4: Button Project

 Run the ButtonProject on the target with
or without animation.

143

Object Model Diagram

 Object Model Diagram in ButtonProject

144

 Statechart in Button

145

 External function prototypes

146

 Statechart in Led

147

 External function prototypes

148

 Interface.cpp

149

Interface.cpp(1)

150

Interface.cpp(2)

151

 Statechart in PushSwitch

152

 External function prototypes

153

Exercise 5: Stopwatch with real displays and switches

 Modify the StopwatchProject to use LCD
displays and button switch on the target

