.||I‘

| IBM Software Group

Essentials of IBM® Rational® Rhapsody® for Software
Engineers

UML v2.1 - Fundamentals

Rational. software

© IBM Corporation

Software Crisis

SW Resource Available {

new technologies and
developments can't be
postponed, only missed

>

1990 2010

N
[Jom]]

.|||
&

Development Process

Requirements Models

Test Scenarios

Requirements
Analysis

Test Scenarios System
Acceptance

]

Requirements

Document
System/Performance @
Model 28
System Design) System Test
& Analysis Q & Integration
—t
HW/SW QO
Requirements (@ 3
Specifications Q
Model D

HW/SW
Design

Module Test
& Integration

Design
Specification
Document

HW/SW Unit Test
& Implementation

Model-Driven/Model-Based Design

= Model

Modeling Language

8

UML 2 fundamentals

* This course is a one day introduction to the use of UML 2
for building embedded Real-Time software with Rational
Rhapsody. The goal of this training is to understand what
UML is and become familiar with the four most widely used
UML diagrams which will always be needed in order to
model most real-time embedded software:

» Use Case Diagrams

» Sequence Diagrams

» Class / Object / Structure Diagrams

» State Machine Diagrams O

A

The course is generally given as
either a single continuous day or O
interleaved with the Rational
Rhapsody Tool Training.
Completing the extended
exercises requires an extra day.

UML Guru

(6)]
[Jom]]

@

UML 2 fundamentals part |

= What is UML?

= How do you describe structure using UML?
Rational Rhapsody Tool Training — Hello World

* How do you describe behavior using UML part |?
Rational Rhapsody Tool Training — Count down

* How do you describe behavior using UML part 11?
Rational Rhapsody Tool Training - Dishwasher

* How do you model communication using UML?
Rational Rhapsody Tool Training — Dishwasher System

[e)]
[Jom]]

UML fundamentals

UNIFIED o
MODELING
LANGUAGE

What is UML?

= Unified Modeling Language
= Comprehensive full life-cycle 3@ Generation modeling
language
» Standardized in 1997 by the OMG (Object Management Group)

» Created by a consortium of 12 companies from various domains
» IBM a key contributor to behavioral modeling

» |ncorporates state of the art Software and Systems A&D
concepts

= Matches the growing complexity of real-time systems
» Large scale systems, Networking, Web enabling, Data management

= Extensible and configurable
» Unprecedented inter-disciplinary market penetration
= UML 2.1 is latest version

.|||
Y

UML 2 diagrams

Package

Structure Diagrams

Diagrams

Class Activity
Diagrams Diagrams
/

State Machine

Object | Diagrams
Diagrams ‘ < Behavioral

tructural Diagrams
Diagrams
Deployment U_se =2
Diagrams Interaction Diagrams
Diagrams
Component Timing
Diania \ Diagrams

Communication
Diagrams

Sequence
Interaction Diagrams

Diagrams

[(e]
[lon]

.|||
=

Use case diagram

* This diagram shows what the system does and who

uses It.

Anesthesia System]

Anesthesia System

Dizplay Patient

Ho=pital Network

Ventilate The
Patient

Status

Alarm On Critical \
Event

Phyzician

Deliver Anesthezia
By Injection

Deliver Anezthesia

N 12

Deliver Anesthesia
By Inhalent

emote Sugeon Display

i R

Chart Recorder

£

ECG Menitor

V4

Patient

10

@

Sequence diagram

» Sequence Diagrams show how instances

communicate over time.

®
@
_— —-.

/

Observer Design Pattern

ObsemverB

ObserverA

Obsemvable

ENY

- ————+——
m
g
5
&
=3
w
e
z
2
a
2
=
m
5 g 2
(=]
¥ ¥ E
SRR S S s B m— i F——
5 5 5
m m
[[o
= = =
ah)

U

11

Class diagram

»Class diagrams show classes and relations between
them.

Command Qverview)

OMOSMutex
J

itshutex | 1

empties
Writer = fills [

1 1

CommandList

| |
| |
| priority |
| <} |
| . |
| e |
| |
| |

«interraces
Command

L «lJsage» i priority:int P «lUsage»
_____] identity:int i

B execute()v...

12

@

Object diagram

» Object Diagrams show Instances of classes and
show which ones are linked to others at run time.

CycleComputer Overview)
= 1 TripTimer
1 Sensor e <zUsages>
T T T T 7 &gresetTripTimer():void
& update():-void
& pulse{)void
1 CycleComputer B & getAverageSpeed():long
1 Kevboard o — <<Usage>» & getCurrentSpeed():long
&l u.nlts_mt I = FoetMaximumSpeed():long
B evLeftPress():void s @ circumferenceint & getTotalDistance()long
HevLeﬂRelease{}:void _____ Eevu T <<Usage»> & getTripDistance():long
B evRightPress():void P _{}'_ ————— H Init()
B evRightRelease():... EEVR'QM(}'V_O'U
& evLeft()-void
& evLeftHeld() void
& evRightHeld() void
’T"«Usage:ﬁs | |
| <<zUsage>> <<U5age>>l
| Ve
! RTClock = winterfaces
: Display
& setTime(h:int,m:int, s:int):void
& incrementMinutes(n:int):-void B clearDigits():void
w incrementHours(nzint):void ==Usage>= HclearSymbols(symbols:int):void
i clockFlash(n:int).void —— & showDigits(thousands:int hun. .
= display():void B showSymbols(symbols:int):void
B evSetTime():void

13

Structure diagram

» This diagram shows the internal structure of classes.

Hybrid SU J «Internal Elock Diagrams
ablocks B
HybridSUY

1 ablocks
commssubsystem

1 ablocks
navigationSubsystem
| A pCom]
L] phav PInSS [E pCom
phav
pint33

1 bodySubsystem

1 chassisSubsystem

1 pIntss 1 interiorsubsvstermn
pBdy33 [IpChsS
pLitsS L[] pMavss
pCom3s [—

pPwrss pBrs

1 brakeSubsystem 4?95“?55

pChss letSSD_

pPwrss pLitSs
1 Subsyst 1 lightingSubsystem
powerSubsystem
— | pBdy33
—[’] pCh3s pBras L plntss [———
pBrss

14

.|||
"II
®

State machine diagram

» State machines are used when you need to wait until
something happens before going to a different state.

StatechartOfllobilePhone)

off l%l'
evOonOff
EE—
evOnOff

| on |

. >
> Disconnected |
I
evDisconnect evCGonnect/
OPORT(blue)-=GEN({evConnected);
Connected |
tm(1000)/
QOPORT(blue}-=GEN({evAlive);
page
) welcomePage l%"| volumePage l%:'|
‘ tm(2000) |
A Fy
evincVolume/ evDecVolume/
\ incVolume(); decVolume(); |

15

@

Activity diagram

= Activity diagrams are used to
describe behavior for
operations, classes, or use
cases. As soon as one activity
finishes, the next one starts.

ActivityDiagramOfAccelerate)

k 4

16

.|||
=

Package diagram

» A package is similar to a folder and is used to
organise the UML model elements.

W|
W e |
Subsyst=mAFkg — _|—— o _ff?/_lr — *g:‘X -
/ JI' ‘IL \%. TestSubsystemBPkg
i \ V2 |
Subsyst=mBFkg / . L_ ___\r_ — “\\f — _
| R S
| S S A N |
l / SubsystemCPig L - [TestsubssenoFi |
L /] AN |
o AN VN -
b A

SubsysternDPkg . Ja;- ’5‘?{ m‘
[/ N A

_f"f /d-
- ‘l | SubsystemEFkg : = TestSubsystemFFhg
% - Nh L
TypesFig - -

17

.|||
Y

Communication diagram

* This used to be known as a Collaboration Diagram
and is similar to a Sequence Diagram, but generally
less popular.

Reading a command /]

:Builder

2. read(y

L 1. evRead()
2.1. aCommand=get(}
——

[]

2.1.3. removetzCommand(aCommand)

2.1.4. print(}

tzReader.Reader

tzCommandLizt: CommandL

l 2.2 execute()

\L 2.3, destructor()

l 2.1.1. lock()

aCommand:Command

tzMutex; OMOSMutex

l 2.1.5. unlock(}

\L 212 getiaCommand}

l 2.1.4.1. getidentity()

\L 2.1.4 2 getPriority()

Command

18

)

Component diagram

= A component diagram shows how components such
as .exe, .dll, .lib, are interconnected.

«Executables 2
Gui
MFCgui &
aLibrarys Z]
MFCguirc B Caontroller
==lJsage=>
===z
MFCguiDlg 3|

StdAfx E]

19

)

Deployment diagram

» A Deployment Diagram shows how UML artifacts are

deployed onto hardware nodes.

Am?

300MHz
32MBytes ROM
8 MBytes RAM

SOMHz
4 MBytes ROM
2 MBytes EAM

™.

S

5D

ush / wifi / bluetooth

HighPerformance PDA
wlibm 2]
Bluetooth
] 0.
EXER EA|
Pda =
| — > Wifi
V. AN
alibw) wlibm
Power usB
LowCostPDA
wEXE z
Pda [- elios]
| USB
slios |
Power
20

@

Timing diagram

= The Timing Diagram focuses on changing conditions
within and among objects on a linear time axis.

21

Interaction overview diagram

= An Interaction Diagram is a mixture of an Activity
Diagram and several Seguence Diagrams.

A 4 v
sd J sd I
Alamm EventQueue Clock EventQueus

| | | |

. send(anEvent) i

'|' | AetEvent[}
tm(200) | |
| | dispatch(evEvent)
ﬂresend[a.nE\'ent} - ! U"‘
! L
| | | |

N
N
[Jom]]

@

How does UML apply to real-time?

= Real-Time UML Is standard UML

» “Although there have been a number of calls to extend
UML for the real-time domain ... experience had proven
this is not necessary.” Bran Selic, Communications of the
ACM, Oct 1999

» Real-time and embedded applications
» Special concerns about quality of service (QoS)
» Special concerns about low-level programming
» Special concerns about safety and reliability
» Real-time UML is about applying the UML to meet the

specialized concerns of the real-time and embedded
domains

23

How do you describe structure using UML?

UNIFIED o
MODELING
LANGUAGE

What is an object ?

= An object is one of the common building blocks in
a UML model. It can represent a system, a
subsystem or a specific software class in a
programming language.

= Several definitions are available:

» An object is a real-world or conceptual thing that has
autonomy.

» An object is a cohesive entity consisting of data and the
operations that act on those data.

» An object is a thing that has an interface that enforces
protection of the encapsulation of its internal structure.

25

@

What is an object ?

* Every object has:
» Responsibilities:
» \What does the object do? Why does it exist?
» Attributes:

= This Is the internal data and can either be fixed In
value or can vary in value.

» Behaviors:

* These are actions performed by the object to fulfil its
responsibilities.

26

Aradio

* Responsibllities:

» Allow the user to listen to desired radio
frequency

= Attributes:
» Wavelength
» Frequency
» Volume

» Behaviors:
» Tune to a frequency
» Store / Recall a frequency
» Change volume
» Switch on / off

27

A digital camera

* Responsibllities:

» Take digital photos
= Attributes:

» Available Memory

» Picture Resolution
» Battery Level

= Behaviors:
» Select Resolution
» Focus
» Take Photo
» Upload Photos

28

\ 1z

A microwave oven

» Responsiblilities?
= Attributes?
= Behaviors?

29

\

Objects can be ...

= Software things
» Occupy memory at some point in time
» For example, CustomerRecord, ECGSample, Window, Font

= Electronic things

» Occupy physical space at some point in time
» For example, Thermometer, LCDDisplay, MotionSensor, DCMotor

= Mechanical things

» Occupy physical space at some point in time
» For example, WingSurface, Gear, Door, HydraulicPress

* Chemical things

» Occupy physical space at some point in time
» For example, Battery, GasMixture, Halothane

= System things
» Occupy physical space at some point in time
» For example, PowerSubsystem, RobotArm, Space Shuttle

30

.|||
&

Object identity

= All objects are unique even Iif their attributes are the
same as another.

» For example, In this room, there are probably many
mobile phones, of which several might well be
identical. Even If they are identical, they are all
unique.

Colin’s
phone

lan’s
phone

@

Object views

» Objects have generally two
different views:

» Public view:

= This Is the view that can be seen
from outside of the object.

» Private view:

* This is the internal only view,
access Is controlled and the details
are hidden from the outside world.

32

8

Object interface

The Public view of an object is the interface that the object
exposes to the outside world and which other objects can use to
communicate with it.

Objects contain their own attributes and generally do not allow
other objects to directly manipulate these attributes.

If other Objects need access to the attributes, then the object
provides public operations (known as getters and setters) to
manipulate these attributes.

This allows the freedom to change the type of the attribute
without the clients knowing about it or indeed having to make
any changes. All that is needed is to modify the getter and setter
to manipulate the new attribute type.

sometimes called Accessors

Getters and Setters are
and Mutators.

33

@

Object attributes

= Attributes are typed values holding information
known to the object, for example:

» value: int
» patientName: string

= All objects of the same type have the same set of
attributes but different copies (hence they may
have different values).

= Attributes are primitive in structure and behavior:

» If they are rich, then they should be themselves objects.

@

Object operations

» Objects execute operations to implement behavior:
» Operations are primitive behaviors such as:
" ++X
"y = sin(X)"2 + cos(x)"2
= 7 = mySensor->getValue()

» Operations can manipulate the attributes, call other
operations.

= Operations can be invoked from other objects as
well as from a state machine or activity diagram
attached to the object.

UML class

» A Class is the definition or specification of an object.

= An object is an instance of a class.

= An object has the attributes and behaviors defined by its class.
= A class can be shown on a Class Diagram in one of many ways.
* On some diagrams, you might want to show just the name of the

class.

= Sometimes, you might want to show just the operations; other
times, you might want to show all attributes and all operations.

Attributes

T
/

Operations

Sensor

Sensor .

M value:int
= calibrationValue:long

= getValue():int \

= zero()void

N

= getValue():int
= rero():void

36

Sensor

Name

.|||
Y

UML object

» As with a class, an Object (also known as an

Instance) can also be shown on a Class/Object

Diagram in many ways:

Multiplicity | —————_

1 UpperSensor-Sensor

M value:int=423

i Clock

M calibrationvalue: long=1284

E currentTime @ tTime

=] getvalue(:int
=] zero()void

=i getTime():tTime
=| setTime(t: tTime) :void

1 UpperSensorSensor

/

Implicit
object

A

It is not
necessary to
show every
attribute, every
operation,
visibility, ...

/

Object name

37

1 LowerSensor:Sensor

M value:int=987
= calibrationValue:long=1504

=i getValue(:int
=i zero():void

L LowerSensor-Sensor

/'

N\

\

Attribute
values at
a specific
instance in
time

Class name

.|||
Y

Multiplicity

» \When showing Objects, you need to indicate how
many objects there are.

* This is done with the Multiplicity, which most of the
time is 1.

1 RedlLed:Led 2 ComPort MAX TIMERS jtsTimer:Timer
8 itsKey:Key
1 Greenled:Led ‘E G

E evPress():void
E evRelease():void

38

.|||
Y

Visibility defined

= Attributes and Methods or Operations are features of a

class.
» Features have the visibility adornments:
» + public
= Accessible by any client of the class.
» # protected

= Accessible only from within the same class or subclasses.

» - private
= Accessible only from within the same class.

A

Rather than using
these symbols,
Rational Rhapsody
uses more graphical
ones which are easier
to understand.

39

Class

M publicAttributesint
protectedAttributesint
&7 privateAttribute:int

= publicOperation():void

TE protectedOperation():void

lﬁ privateOperation():void

.|||
&

Constructors and destructors

» Every Class has a couple of special operations
allowing Objects to be constructed / destroyed.

= A constructor Is always called when an Object is
created and generally initializes its attributes.

» A destructor Is always called when the Object is

destroyed and ensures that any allocated resources
are properly returned.

w3ingletons

HardwarePkg::spi

E itsSm4 : OMProtected*=MULL
CO nStI‘UCtOI’ M thelnstance : gpi==MLILL

= getSpiBus ()i void

= freeSpiBus():void

& write (data:int):void
N =i read(J:int

s spi()
Destructor \ & getinstance(:spi*

~spi()

40

@

Static and abstract operations

= A static operation is shown underlined.

» An abstract operation is shown in italic.

Abstract operation

Static operation

DatalLogger

—

B log(aMsg:char® aTime:tTime):void
~DataLogger()

‘4, Datalogger()

& clearLog():void

«Usage» |

\y

z3ingletons
Printer

& «Guarded» print(aMsg:char*):void
& «Guarded» printin(aMsg:char*):-void
& «Guarded» print(n:int):void

& «Guarded» printin(n:int):void
Hthelnstance():Printer

& Printer()

41

.|||
Y

Exercise 1

* What are the attributes, operations and
responsibilities of the following?

Timer

Led

ComPort

\

How do you describe behavior — Part 17

UNIFIED o
MODELING
LANGUAGE

Hello World

Types of behavior

» Behavior can be simple:
» Simple behavior does not depend on the object’s history.

= Behavior can be continuous:

» Continuous behavior depends on the object’s history but
In & smooth, continuous fashion.

= Behavior can be state-driven:

» State-driven behavior means that the object’s behavior
can be divided into disjoint sets.

44

Simple behavior

= Simple behavior is not affected by the object’s

history:
» COS(X)
» getTemperature()
» setVoltage(v)
» Max(a,b)

FlowchartOfScale_counts J

unsigned long max_count; ‘
int i;

= [t may be represented by activity diagrams, if

desired.

45

@

Continuous behavior

» Object’s behavior depends on history in a continuous way

» PID control loop: X_n.KaL.@an {pelay R
L
» Digital filter: dd; - +dj - 2+d; -3

i

» Fuzzy logic:
» Uses partial set membership to compute a smooth, continuous

output

UML is not very good
at describing
continuous behavior.

46

@

State behavior

» Useful when an object
» Exhibits discontinuous modes of behavior
» Walits for and responds to incoming events

* For example a Light can be :

» Off

» On

» Flashing

a7

Why use state machines?

= A state machine is an abstraction of the desired
behavior of a system with actions, activities, and
constraints.

» An object’s behavioral possibilities are defined in a
primitive way by its defined operations.

» A state machine constrains the use of those
operations into particular sequences.

* Thus constrained, the object’s behavior is more
understandable and more easily tested.

= State machines are a more abstract view of
behavior, based on the object’s perspective not the
Implementation.

State machines are executable

» Because state machines are formally defined, they form
executable models.

= State machines can be executed and visualized at the
design level of abstraction.

» State machines can be animated - their dynamic behavior
shown graphically:

» Standard debugging can be done, such as setting breakpoints, step
through, step into, and so on. | et

| lockedByCard f§J|

= You can focus on the abstract behavior:
» Was the door locked with a card or a code?
» Rather than, iIs some variable 0 or 1?

ElnckCard =card;Z...itsLoc. ..
= itsank.Dpen(}::...itsDis%Ila___

CARD_UNLOCK

CODE_UNLOCK

» State Machines provide for easy testing.

403

lockedByCode

", lockCode = code; Z._itsLoc...
=, itsLock.open(): =__itsDispla..

=

49

@

State machine execution

eyStart

evlerminate

active>

! tm(o

ﬁIIingUpper>]>_’[
eviull

000)
upperkull=]\

[

tm(1000) ,[lowerFull=

\'(ﬁllingLower:»

:

evPause

evResume

pause]

50

evihort

emptying=

.|||
&

States / transitions / actions

= \What Is a state?

= \What Is a transition?

=\\Vhat IS an action?

A state Is a distinguishable,
disjoint, orthogonal condition of
existence of an object that
persists for a significant period of
time.

A transition is a response
to an event of interest moving
the object from a state to a state.

An action is a run-to-completion
behavior. The object does not
accept or process any new
events until the actions
associated with the current event
are complete.

51

)

Basic state machine syntax

* Transition syntax
» trigger [guard] / action list

Default
Transition

N

Trigger

Off

mﬂn[lsRead}r{}]f

Guard

\/

State name

=

EJH

-

/

State

Transition

52

-

Action List

Entry / exit actions

ENV

)

Entry actions

log("Red to Green");

Exit actions

:_ evRed[isAllowed())/
GREEN log("Green to Red");
“Egreen@n(] h
~, greenOff():
evGreen/

RED

"=, redOn();

2, redOff();

Note the order of
execution of the actions
and that the guard gets
checked before any
actions are taken.

53

When the LED is
created, it starts in
the GREEN state

In the RED state,
evRed is discarded.

S A S S I

|

LED

'[greenOn()
GREEN

evRed() |
q_—__—_‘*—n“}
isAllowed()
;ISA”DWEd(}
F—=
evRed() <~
7
isAllowed()

Eisﬁ-\llnwed(}

redOn()

]

o

|h_\- — ———
?eenom:} o

log(aMsg = Green to Red)

When evRed occurs
and the guard is false,
~ then the event is not
taken

When evRed occurs and
the guard is true, the event
is taken, it executes the
exit action, then the
transition action and finally
the entry action

/ E

In the RED state. evGreen
transitions back to the
GREEM state

RS

ILIULI

red Off()
log(aMsg = Red to Green)

greenOn()

GREEM

Types of events

= UML defines 4 kinds of events:
» Sighal Event

= Asynchronous signal received for example, evOn,
evOff

» Call Event
= Operation call received, for example, opCall(a,b,c)

* This is known as a Triggered Operation in Rational
Rhapsody

» Change Event

* Change in value occurred
» Time Event

* Absolute time arrived

* Relative time elapsed, for example,
tm(PulseWidthTime)

54

8

Time event

= \When an object enters a state, any Timeout from
that state is started. When the Timeout expires, the
state machine receives the expiration as an event.

* \When an object leaves a state, any timeout that was
started on entry to that state is cancelled.

* Only one timeout can be used per state; nested
states can be used If several timeouts are needed.

off

2

o>

Entry action — oo
> lig ;

L=, lighton();

g

Time event

tm(5000)

evDoorOpen

Exit action / o J

evDoorOpen

on

|

CourtesyLight

[=!

delay

evDoorClose T

55

'fﬁ lightQn{):void

Tl lightOFF) :void
EEVDDDrOpenD:VDid
EEVDDDrCIDSED:VDid

@

tm(delayTime)

» tm(delayTime) is specific to
Rational Rhapsody and
code is automatically
generated to start and stop
the timeout.

* This is equivalent to the
second state-chart where a
timer is started on entering
the state and stopped on
exiting the state. If the timer
expires, then it would send
the requested event, for
example, evDelay.

UML actually defines the
keyword after(Delay)
instead of tm(Delay).

*—»

56

off

“x_ lightOff();
<, lighton();

tm(5000)

evDoorOpen

evDoorOpen

delay

on

i

‘ on
evDoorClose
off (@]
evDelay
®—» 1 lightOfi();
lightOn();
= lig 0 delay \%‘
“x, startTimer(5000 evDelay);
evDoorOpen EVDoorOpen | <, stopTimer

evDoorClose T

.|||
=

Handling transitions

» |[f an object is in a state S that responds to a named
event evX, then it acts upon that event.

= |t transitions to the specified state, If the event
triggers a named transition and the guard (if any) on
that transition evaluates to TRUE. It executes any
actions associated with that transition.

= |t handles the event without changing state if the
event triggers a named reaction and execute all the
list of actions associated with that reaction.

@

Handling transitions

» Events are quietly discarded If:

» A transition is triggered, but the transition’s guard
evaluates to FALSE.

» A transition to a conditional pseudostate is triggered, but
all exiting transition guards evaluate to FALSE.

» The event does not explicitly trigger a transition or
reaction.

= |[f an event cannot be handled, then UML allows an
option where the event can be deferred until a
suitable time when it can be handled.

does not yet handle

Rational Rhapsody
deferred events.

58

@

Reaction In state

ParkingMeter = Param e;er
asse
& creditint=0 p
with event
illegalParking S
& evCoin(int value)-void *- ‘ [':I-Edit - I:/
evCom/
credit=params->value;
i legalParking &)
I.%" eyCoinfcredit+=params-:»value; mﬂnﬁ'—m-li.
Reaction
in state . -
T [else]/ credit-—
4 Condition connector

A reaction in state is an
event that is handled
without exiting the state.

59

Transitions: Guards

= A guard is some condition that must be met for the transition
to be taken.

» Guards are evaluated prior to the execution of any action.
= Guards can be:

» Variable range specification, for example: [cost<50]

» Concurrent state machine is in some state [IS_IN(fault)]

A

If two guards are likely to
be true at the same time,
then itis a good idea to
chain condition connectors,
so that the order in which
the guards are tested is
known.

Fed

60

Green

Blue

.|||
Y

Actions

= Actions are run to completion:

» Normally actions take an insignificant amount of time to

perform

» They may be interrupted by another thread execution, but
that object will complete its action list before doing

anything else
» Actions are implemented via:
» An object’s operations
» Externally available functions
» They may occur when:
» Atransition is taken
» Areaction occurs

» A state is entered
» A state Is exited

61

Do not use actions
that block.

For example reading
a socket.

8

Null-triggered transitions

* Also known as Com
* Triggered upon com
» May contain a guarc

nletion Transitions.
nletion of any entry actions.
condition.

= Will only be evaluated once, even if guard
condition later becomes true.

I

ollin ready
P : [isReady()] [’

state, since there is no

ﬁOn entering the polling ‘
trigger, the guard is

| ﬂ

it is true, the object

immediately tested. If +m 10007 T

moves to the ready
state. The guard is
retested every time
that the timeout
occurs.

62

)

State machine syntax — OR states

= An object must always be in exactly one OR-state at
a given level of abstraction.

» The object must be in either off or on or delay — it cannot
be in more than one or none.

off ()

Ehghmm} B tm(5000)
=, lighton();

*—»

-

evDoorOpen

evDoorOpen l i
4 !

on

evDoorClose

63

8

Exercise 2: luggage belt system

* Draw the state machine for a luggage belt system.
The belt is started when the start button is pressed

and runs until either the stop button is

oressed or

until there is no luggage on the belt. This condition

IS when no luggage has been detectec
previous 60 seconds.

In the

LuggageBelt

=

EevStalt{):void
E evDetect():void
EevStop():void
ﬁ beltOn():void
5 beltOff():void

How do you describe behavior Part 27

UNIFIED o
MODELING
LANGUAGE

Count Down

State machine syntax — nested states

[armed
S, itsLed[RED].off);
aevTemporise . : .
exiting @J
tm{EXIT_TIME})
"y itsLed[RED].flash{100};
active l.ﬁJ
Nested
Simit]); l evDoor “haitsLed[RED].ani); state
entering '.’il Iy /

v itsLed[RED].flash{100};

evhlovement

i evilovement %

intrusion

avDisarm

tm{SILENCE_T

silence

e EDLIT_F'DFLT[-:pj-—b-s-EtSiren[DH:-;
trm{EMTRY_TIME) l1E:ILIT_F'EJF{T{-::|::-:.-:=-5.|515irJen{E:lFF:-;

tm{ALARM_TIME)

I

\

If the event evDisarm is received when the
object is in state armed, then irrespective of
which nested state is active, the transition will
be taken and the object will go into the off state

66

Exercise 3: LED

= Draw the state machine for an LED class that can
be in one of three modes: on, off and flashing at
1Hz.

Led =

Eevaf():void
EeanU:vﬂid
EevFlash():void
ﬁ on():void

ﬁ off():void

Nested states: hierarchical events

* When an event is received, it is processed in order, starting

with the inner most state until the event is

rocessed. For

example, if the event evMove is received then:

If the active state Is
up, then the object
goes to the down
state.

If the active state Is
down, then the object
goes to the up state.
If however, the active
state is stationary,
then the object prints
out evMove not
handled.

-~

active

@)

c%) evMove/print {"eviMove not handled");

‘ stationary

]

evstart

evstop

maving

evilove
evilove

v

down |

h

68

@

UM

_ pseudostates

Symbol

Symbol Name

Symbol

Symbol Name

~

©

=
(oo

® o ®

Initial or Default Pseudostate

Branch Pseudostate (type of
junction pseudostate)

Junction Pseudostate

Fork Pseudostate

EntryPoint Pseudostate

Terminal or Final Pseudostate

0]

[9]

(Shallow) History
Pseudostate

(Deep) History Pseudostate

Choice Pseudostate

Join Pseudostate

ExitPoint Pseudostate

You cannot draw a choice Pseudostate in Rational Rhapsody,
but the same effect can be achieved by replacing it with a state.

69

Exercise 4: mouse

» Draw the state machine for the following e ®
mouse that has three extra buttons: e

& evMagnify():void

» One of these buttons allows the Mouse to el e

B8 evMagnifyReleased():void

magnify the area around the mouse. This sl up(void
. . . . & down():void
magnify mode is invoked and exited by g incMagnification()-void
- - . decMagnification():void
pressing the magnify button (evMagnify). oo

& magnify Off():void

» When in the magnify mode, if the magnify
button is held (evMagnifyHeld), then the up
(evUp) and down (evDown) buttons control the
magnification, invoking operations
IncMagnification() and decMagnification(). It
remains in this mode until the magnify button is
released (evMagnifyReleased).

» When the magnify button is not held, the up
(evUp) and down (evDown) buttons invoke

operations up() and down(). /

70

8

AND-states

» When a state has multiple AND-states, the object
must be in exactly one substate of each active AND-
State at the same time.

» AND-states are logically concurrent.

» All active AND-states receive their own copy of any event
the object receives and independently act on it or discard
It.

» Cannot tell in principle which and-state will execute the
same event first.

» Not necessarily concurrent in the thread or task sense.

» UML uses active objects as the primary means of
modeling concurrency.

» AND-states may be implemented as concurrent threads,
but that is not the only correct implementation strategy.

71

8

State machine syntax AND states

Both sides handle the same event

active

armingDisarmingReprogrammi

newlode = (10 * neWlode) + params-=n;
count++;

Code = params-=n; l EY_EMTRY_TIMHE

t=1; -
un enteringCode

itsAlarmController-=GEM{evDisarm);

[%
": idle -

Home Alarm

|
evkiey S _IN{comect))’ |
|
|

|

K.eppad

o O

2| 2| efleyon

_4| _EI _EI evKeyOr[IS_INdjfferent)y

_?l _BI _9| change(]
/

|

[1S_IN{comgct))/

itsAlarmCohtroller-»GE N [isCodeEntered()]

[isCodeComect]]]

: [else]

tovemnent Door | | waitOl = |
I V4 ¥ -

eviceyOn | different | | comrect |
[els= | | | |

[15_IM{comect)] tm {2000} tm(2000)

waithewCode /.__; notEntered
evkeyCff l /l/
*tm[l{E‘r'_EH —TTIET *\

—

AND states Orthogonal state separator

72

AND-state communication

= AND-states may communicate via:

» Broadcast events
= All active AND-states receive their own copy of each received
event and are free to act on it or discard It.

» Propagated events
= A transition in one AND-state can send an event that affects
another.

» Guards
= [IS_IN(state)] uses the substate of an AND-state in a guard.

» Attributes
= Since the AND-states are of the same object, they “see” all the
attributes of the object.

IS _IN is a Rational Rhapsody
C++ macro that can be used to
test to see if an objectis in a

particular state.

73

8

State machine syntax — connectors

Initialise both history
and default state NG

evlerminate

(=5

N
;

_

lower
\[filingLower &) Im(1000) lowerFull &
|

I
T—é ~— History

'*?

tm(5000

[fillingUpper @F ; |
/ | evFull

Junction

upperfFull & ’\

/

evPause l

[

pause

74

evAbort

8

Submachines: parent

evStartStop

ready Z)

“Einit]);
(2} evincreaselevelfitsLevel increase();
(2 evDecreaselevellitsLevel decrease();

l evStartStop

startingGame

2}

gameOver

%)

“ritsDisplay->drawGameOver(); =
=, itsBoard.clear(); =...itsBoard.displ...

¥

“ritsDisplay->drawGameOn(); = . createNextP .
remainingPieces = itsLevel.getPieces();Z...

v

[remainingPieces==0]/
changelLevel();

W

{2 evincreaselevellitsLevel increase(); newPiece i
f%)evDeu:reaseLevel.-“itsLevel.dec:reas... »
“tplacePiece(): = itsDisplay-=updateRemaini... [
R ! Fy -
evStartStop evStartStop +
runningGame
DONE
. GAME_OVER
- paused @- PALUSED R
“ritsDisplay->drawGamePaused();
itsDisplay-=draw on()
=, itsDisplay->drawGame0n() evPauseResume evPauseResume

F 3

=

Stub state connector

75

[else]/
remainingPieces--;

removePiece

&

‘Edelete itsCurrentPiece;...
=, itsMextPiece-=remave();

Submachine reference

)

Submachines: child

Submachine
\r runningzame @
"t.itsCurrentPiece—bshow[};
&
startup ¢ tmiitsLevel.getDropTime()) [else] B Z LN
| BitsCurrentPiece-=drop(); g =.
lisDropPossiblel)]
i controlling @3
\&;itsCurr_entF‘iece—:drUp(}; JisDropF‘ossibIe[}]
evDraop f%:' evLeftitsCurrentPiece-=moveleft(); -
¥ @) evRightiits CurrentPiece-=moveRight();
dropping @ f%:' evRotatelits CurrentPiece-=rotate();
‘E.itsCurrentPiece—:drop(}; ; i
[i=DropPossible()] tm(itsLevel.getDropTime())
F
isDropPossible
lisDrop 0 tm(10) el
[elze]l dropped e
)))] [else]
"t.|tsCurremF'|eu:e—>dr0p(};:...|tsCurremP|ece—>5h0w[]; . » .
= SCORING_EVENT scoringEvent = itsBoard.check();Z._.if (sco... DONE
e -
Stub state PAUSED
connector

76

=]

Timeouts revisited

» \What is the output of the following state

machine?

MeterReader
Electricity Gas
idle

"

i tm(1000)

reading @

“x, readElectricity();

1

tm(1000)

._.I[idle

l tm(5000)

reading &)

“x, readGas();

L 4

tm(1000)

T

tm(4000)/

logReadings();

1

a

Poorly formed state machine

Race condition

<

Must be same event

History not initialized

\

™\

~StatechartOfBadDesign)

| Wte_ﬁ.

78

; \ (state_E A
\{tate_ﬁna ﬂb state_A2a
/ AN ev2/x=0: ova o> state_E1
____________________ evs evb ev7
No default ﬁ
State \\ te_A1b ev1/x*=3; state_A2b state_E2 l
\ y, \, @ J
[amount<=0]
ev2
: v
ConﬂlCtlng /te_B evCoin/ .
oA 5] (=) amount=params>aCoin;
transitions / state_D ,@)
ev3
[x=0] W< [amount=D]
Overlapping \/
guards — e
Use before initialization

Inherited state behavior 1

= Two approaches to inheritance for generalization

of reactive classes:
» Reuse (for example, inherit) state machines of parent
» Use custom state machines for each subclass

* Reuse of state machines allows:
» Specialization of existing behaviors
» Addition of new states and transitions
» Makes automatic code generation of reactive classes
efficient in the presence of class generalization

79

8

Inherited state behavior 2

» Subclasses may be:
» Specialized:

= Sub-states may be added
* Transitions may be rerouted

= Action lists may be modified
» Extended:

= New states added
= New transitions added
= New action lists added

80

Inherited state behavior 3

A subclass must be freely substitutable for the
super-class in any operation.

» Assumes Liskov substitution principle for

generalization:
» YOU can:
= Add new states
= Elaborate sub-states in inherited states
= Add new transitions and actions
» YOU cannot:
= Delete Inherited transitions or states

81

Example: Generalization

off ; evOn’ i g .
F EitehOn() ? oy O: —— Modified action list
3

.
evOff’ on
switchOff); EEE— y

ol
-

evl_}l’f . N eW S U b'StateS
switchOff(); evHigh
\ low ﬁ /

and transitions
Blower s =] w nar

T New AND-states

eviOn
DualSpeedBlower 7 & switchOn();
off ledOn():
| ¥

i high
\ evLow

F g on |
v
4
switchOff{): . | N
evHigh | o cool
|D‘|’l'|l. | ‘l— w
3 & evWam
DualSpeedMultiHeatBlower | Cool
=] | ¥
I

82 = = ===

Exercise 5: Battery charger

= Draw the state machine for a simple Battery
Charger that can charge two batteries in
parallel. The charger has three modes: idle,
discharging, and charging.

» A button can be pressed (evStart) to start BatteryCharger s

charging the batteries. However, before each | &ecagesateyagon
battery can be charged, it must be discharged. |&erargesatenaovoid

&yl dischargeBatteryA():void

= When each battery is discharged, it sends an | Gacmea 0"

event (evBatteryA_Discharged or S evBattens_Discharged(voi
evBatteryB Discharged) to the Battery 3 evBatteryB Discharged()void
C harg er. [evBatteryB_Charged():void

* When each battery is charged, it sends an
event (evBatteryA Full or evBatteryB_Full) to
the Battery Charger.

= \When both batteries are charged, the Battery
Charger returns to the idle mode.

83

)

How do you model communication using UML?

UNIFIED o
MODELING
LANGUAGE

Dishwasher

84

Object collaboration

» Objects work together to form cohesive
assemblies called collaborations.

» Collaborations work by the fulfillment of system-
level behaviors called use cases via their
behaviors and operations.

setSpeed ()

) Engine

Autopilot setFlapPosition() />ControISurface

- /3 Sensor

Messages

* Objects communicate between each other via
messages

= Messages may be:
» Synchronous for example, Function call
» Asynchronous for example, Posting OS message

86

@

Relationships

" [n order to send a message to another object,
there must be some kind of relationship
between the objects:

» Objects may use the facilities of other objects with
an association.

» Objects may contain other objects with an
aggregation.

» Objects may strongly aggregate others via
composition.

» Classes may derive attributes and behaviors from
other classes with a generalization.

» Classes may depend on others via a dependency.
» Association, Aggregation, and Composition allow

objects to communicate at run-time. F

Generalization basically
implies Is a Kind of.

87

8

Associations 1

= Allow instances of classes to communicate at run-
time:
» Instances of associations are called links.
» Links may come and go during execution.

* Denote one object using the facilities of another.
= Lifecycles of the objects are independent.
= Allow objects to provide services to many others.

88

Associations 2

= Associations may have labels:
» This is the name of the association.
= Associations may have role names:

» ldentifies the role (or responsibility) of the object in the
association.

= Associations may indicate multiplicity:

» Identifies the number of instances of the class that
participate in the association.

» Associations may indicate navigation with an open arrowhead:
» Unadorned associations are assumed to be symmetric
» Most associations are unidirectional.

89

8

Multiplicity

» Denotes the number of instances of the related
classes that participate in the association.

= Options:
» N fixed number, for example, 1, MAX_ ELEVATORS
p * Zero or more
»1..* One or more

» X..Y range, for example, “0..1" or “5..7"

Most associations
have multiplicity 1.

90

@

Associations - 3

91

Relation Name Multiplicity
Pack always has
1.2
itsPacle itsCard 52
CardGame uses oo
has
o - Hand itsCar 0.13
is type of e
itsHand \
Role name
Cribbage Whist BlackJack

Navigation

Aggregation

* Indicated by a hollow diamond

= Whole-part relationship denotes one object logically
or physically contains or has another

» \Weaker form of aggregation. Nothing is implied about:
» Navigation
» Ownership

» Lifetimes of participating Vindon
objects

92

Aggregation

= Multiplicity of owners > 1 indicates a

shared part.

AuthorCatalog

By forming a graph,
it mean that a class
can aggregate itself
(although it must be
a different instance)
but in composition
you can'’t
(compositions can
only form trees).

* Forms a graph with its parts.

TitleCatalog

SubjectCatalog

ard

—
*
EY

93

~

{Shared}

@

Composition

» Indicated by containment or a filled diamond.
» Whole both creates and destroys part objects.

= Composite is a higher level abstraction than the
parts:

» Allows the class model to be viewed and
manipulated at many levels of abstraction

» Stronger form of aggregation: Game
» Implies a multiplicity of no more than one
with the whole !

* Forms a tree with its parts.

94

Composition example

» This diagram shows that the PC creates instances
of the other three classes, but it is not clear If the
relations between the instance of the Motherboard
to the GraphicsCard and USBCard get initialized.

PC

GraphicsCard

Structured class example

= With a structured class, you can clearly see that the
PC is composed of instances of USBCard,

Motherboard, and GraphicsCard and that the
relations between these instances are initialized.

Part

PC

UC:USBCard

MB:Motherboard 1 GC:GraphicsCard

ol & 1] 1§
Ty 9] o ’_“ 4 1
BNy - -
- S TR N e el
e
. e B e
'
l.IL | a
-
-
.
3 ks

|
Connector / Link

96

Qualified association

» Used with a relation of multiplicity *.

» Allows the relation to be sorted according to the
value of an attribute.

Airline

M numberofMembers:int

=i getMilesFlown{anld:int):int

“| frequentFlyerMNumber |

Qualifier | —

Member

A Qualified
association could be
implemented as a
balanced tree.

M name:char=
M address:char®

=! frequentFlyerMumberint

M milesFlawnint

=i getMiles():int

97

AuthorCatalog
author
MameCatalog
ame j>————
ISBMCatalog
BN o]
Book
= 15BN:int
M name:char
M author:ch

@

Assoclation class

= An association class is used when information does
not seem to belong to either object in the association
or it belongs equally to both.

Client

Server

Association
class

Session

= idint

= address:unsigned ...

98

Template / generic classes

= Some

allow the use of template or generic classes. The

UML a

I_C:ﬁcﬁt_i
|

OMADbstractContainer

.

~OMAbstractContainer()

ﬁ getFirst(pos:void * &) void
E getNext(pos:void * &) void

ﬁ getCurrent(pos:void *).Concept &

99

anguages such as C++, Ada, C#, and Java

Template
argument

lows template / generic classes to be drawn.

@

Dependencies

» A dependency can be used when a class has no direct
relation to another class, but uses it in some way.

* The «stereotype» details how the item is dependent on
the other.

| Cnrﬁpt_i
| Concept |
| " OMAbstractContainer |]
OMiterator |
& operator++(;: OMiterator=Concept= & ~OlMAbstractContainer()
Hoperatort(;:Concept & —_————— &l getCurrent(pos:void *):Concept &
& operator=(iter.const OMiterator=Concept= &):OMiterator=... zFriend= @& getFirstipos:void * &)void
= reset()void &l gethextipos:void * &):void
| zlJsages
' i oo
L Alarm OMList] |
AlarmList i
= B add(c.Conceptyvoid
T _xmd»_ - B getatiiint):Concept &
Hfind(c:Conceptybool
| | _ & operator=(l:const OMList=Concept= &);OMList=Conce...
S | | «3atisfy» B operator{l(i-int;: Concept &
ge= | L «Requirements B remove(c:Conceptivoid
W — = REC_Manage_Alarms
Alarm ID=REQ_4.1

Must keep track of all alarms
that occur in the order in
which they occur

100

Generalization 1

» Generalization means two things in the UML.:
» Inheritance

* The child acquires things from the parent(s). In
UML, a child class acquires the attributes and
operations (including state machines) from the
parent class(es).

» Substitutability

= [t Is satisfactory to use the substitute instead of
the intended item. In UML, a substituted object
(instance) performs satisfactorily.

101

Generalization 2

» Subclass is-a-type-of the superclass.
» UML generalization means:

» Subclass inherits structure and behavior from the
superclass:

SuperClass

= Attributes

= Operations

T

= Relations

SubClass

= State Machine or Activity Diagram

» Instances of subclass are freely substitutable for
Instances of the superclass.

102

8

Generalization substitutability

= Liskov substitution principle:
“An Instance of a subclass must be freely
substitutable for an instance of its superclass”’.

= An obﬂ'ect with a relation to a general object should
be able to use the general object's derived objects
without knowing It.

Generalization 3

= Generalization Is shown with a solid line and
closed arrowhead pointing to the more general

class.

Pc

1

VideoDevice

Maonitor

Generally the Super
Class is always
shown above the
Sub Class.

104

S\

Generalization

Projector

@

Generalization 4

» Subclasses may be extended by adding:
» New attributes

» New operations

Sensor

E value:int
E location:int

ﬁgetﬂalue{}:int
ageﬂ_nmﬁnn{]:int

T

TempSensor

New attributes | ———___ = mad mits:int
E minLimits:int
E calConstant:int

/ amlibrate{]:unid
New operations

ﬁ setlimits{min:int, max:int)vaid

105

Generalization 5

» Subclasses may be specialized by:
» Redefining existing operations

Inherited

New attribute

New operation

Client

1

Queue

itsQueue

: @ insert(aMsg char®) void «<=—=

= head:int
] tail-int

| sizesint

> [getSize()int

|

CachedQueue

\

= filename:char*

@ insert(alsg char®) void <l

& remove():void

& flush()void

106

Virtual

operations

Specialized
operations

Queue and CachedQueue

= |f the Client is using the
Queue, then you could
replace the Queue by the
CachedQueue without
needing to change the
Client’s code.

itsQueue->insert(“abc”);

The Client calls the
insert operation
without knowing if it is
the Queue or the
CachedQueue which
is being used.

107

SystemA
1 itsClient:Client
/ itsQueue: Queue

SystemB

1 itsClient 1:Client
\\

N
—

1 itsCachedQueue:CachedQueue

.|||
Y

Good generalization

» These are all different types of buttons, all having
different behavior.

Button

AN

LockingButton MomentaryButton Turnknob

AN

GroupButton

MultipositionButton

«?—*

108

PushknobButton

Bad generalization

» These are all basically the same class.

Button

T T

UpButton StopButton

DownButton

* They should all be of the class Button, with
perhaps just an attribute indicating the type
of button.

109

Button

M id:int

Hay Button{anld:int)

Ugly generalization

» Beware of multiple generalization:

Command

] id:int

i execute():void

p

Level1Command

o levell:int

Which execute
IS run?

& execute():void

& This is also known as the Diamond of Death.

N

<

Level2Command

o level2:int

& execute():void

5

MultiCommand

= multiLevelint

110

Gets two copies of
Attribute id.

.|||I
&

Exercise 6

An elevator system will have two
elevators and eight floors.

Each floor will have a couple of
buttons to call the elevator.

Each button has an indicator
indicating that it has pressed.

Each elevator will have a button and
ﬁorrespondlng Indicator for each
olo]¢

1. Draw the class diagram.
2. Draw two different scenarios.

A

Drawing the scenarios help in
verifying that the class diagram is
correct.

111

(n
[v randorm

[daown

[up
[daown

[up
[daown

[up
[daown

[up
[down

[up
[down

[~ up
[down

[~ up

elenvatar &,

—

elervatar B

-

\

.|||
Y

Elevator system: Class diagram

Elevator system: Scenario 1

Elevator system: Scenario 2

Interfaces: why do you need them?

= |[n the following model, when the button gets
pressed, it invokes the press() operation on the
application, for example:

Button 1 Application
itsApplication

B press():void

LN

X

itsApplication->press();

= [t Is difficult to reuse the Button class since it is
closely associated or coupled with the Application
class.

@

Interface IButtonListener

* You could add a new class to isolate the Button from the
Application. This class would be what is called an Interface
class and would have just abstract operations having no

Implementation.

* The application classes would realize the IButtonListener
class and implement the press() operation.

Button

1

/

its|ButtonListener

wlnterfaces
[ButtonListener

B press().void < |

£l I
’
’

’
P —

<

%

b
.
-
3
T
.
"~

Elevator

& press()-void

Floor

its|ButtonListener->press();

& press()-void

116

/

Abstract
operation

Realization

@

Interfaces

» An interface is a named collection of operations.
= UML interfaces specify only messages or operations.

= UML Interfaces have no implementation and generally have
no attributes.

» Classes realize an interface by providing a method
(implementation) of an operation:

» A class that realizes an interface is said to be compliant with that
Interface.

» Classes may realize any number of interfaces.
» Interfaces may be realized by any number of classes.

A

To make Interface classes more
apparent, they are often named
starting with an |. The name of the
class and the abstract operations
are generally italicized.

117

.|||
Y

Ball and Socket notation

= Another way to draw an interface class and the
realization of an interface iIs to use the Ball and Socket

notation:

Required interface

Button

The Ball is sometimes
referred to as a lollipop.
Torecall if O—

think that there is an O in
prOvided.

means required or provided,

Application1

e

IButtonlistener

E press():void

Provided interface

118

.|||
Y

Advanced Rational Rhapsody

Avoliding common
mistakes

Dead lock situation 1

If the guard fails, then the
transition will not be taken
and the timeout will not be

restarted x

/

‘ Poliing s
tm(200)[isReady()]/

‘ run();

[1IsReady()]/
run(),

—_
—_
e

By using a condition

connector and an else Polling

tm(200)

condition, the transition will [
always be taken and the l

timer restarted. /

120

Dead lock situation 2

When the waiting state is entered, if the
guard isReady() evaluates to false, then it
will not be tested again, and the statechart
will be stuck in the waiting state.

\\ I

waitin running
W d [iIsReady()] >} i

By adding a timeout, the guard will
be tested everytime that the
fimeout expires

\\ I
\\

\ 1 \
g

tm(200)

121

Transition or reaction in state?

whenever evlLeft or evRight
occur, the timeout is restarted

)

e
f’f g
controlling tm(200) running |
evlefty evRight/
lefi(); right(); After 200ms, the timeout will expire. If
evlLeft or evRight occur, then they do
not restart the timeout
/
llr =
controlling ﬁ;:'}
*—») evLeft/left(); tm(200) running ‘

Reactions in state

122

Null transitions

» Each time a state Is entered, Rational Rhapsody
checks to see If there is a null transition that could be
taken. If there Is, then the transition iIs taken.

» In the following example, there is no stable state since
every state has a null transition with a guard that evaluates

to True.

= In this case, the following message is displayed: Infinite
loop of Null Transitions.

A Null Transition
IS a transition that
has no trigger.

=0
y=0;

[initialise |, [F:Ul,[calibrating

<Ermor Found Pitfalld[0] Infinite Loop of Mull Tranzsitions: Break point Active

Erecutable iz 1de

e o

|
%B{ |
— }47 [y==0]

|4| 4| }lbll'-. Biusilid)’\ Check hodel ,.]'\ Corfiguration Management }\Animalinnf

123

@

What is done first?

* \When in the waiting state, what happens when the

evColin event Is received?

Meter

=

= coinint

B8 evCoin()-void

0——»[waiting 1
evCoin/
coin = aValue;
[else]
C
[coin = 0]
¥

credit |

Answer : The value of coin is tested BEFORE it gets assigned!

124

a

Where to find out more

Covers UML 2.0

R EAL Tive UML
THIRD EDITION

ADVANCES IN THE UML FoOR
REAL-TIME SYSTEMS

BRUCE POWEL DOUGLASS

Foreword by Professor David Harel
The Weltzmann Instituto of Sclence

IEET TROMMOLOaY

ETIEH
] sncosson
LA

AR ey

125

EMBEDDED TECHNOLOGY™ SERIES

Workshop for
Embedded

Systems

Cash Register

‘|||
&

Page left intentionally blank

126

.|||
Y

