
®

IBM Software Group

© IBM Corporation

Essentials of IBM® Rational® Rhapsody® for Software

Engineers
UML v2.1 - Fundamentals

2

Software Crisis

3

Development Process

4

Model-Driven/Model-Based Design

Modeling Language

5

UML 2 fundamentals

 This course is a one day introduction to the use of UML 2
for building embedded Real-Time software with Rational
Rhapsody. The goal of this training is to understand what
UML is and become familiar with the four most widely used
UML diagrams which will always be needed in order to
model most real-time embedded software:

Use Case Diagrams

Sequence Diagrams

Class / Object / Structure Diagrams

State Machine Diagrams

The course is generally given as

either a single continuous day or

interleaved with the Rational

Rhapsody Tool Training.

Completing the extended

exercises requires an extra day.

6

UML 2 fundamentals part I

 What is UML?

 How do you describe structure using UML?

Rational Rhapsody Tool Training – Hello World

How do you describe behavior using UML part I?

Rational Rhapsody Tool Training – Count down

How do you describe behavior using UML part II?

Rational Rhapsody Tool Training - Dishwasher

How do you model communication using UML?

Rational Rhapsody Tool Training – Dishwasher System

7

UML fundamentals

8

What is UML?

 Unified Modeling Language

 Comprehensive full life-cycle 3rd Generation modeling
language
Standardized in 1997 by the OMG (Object Management Group)

Created by a consortium of 12 companies from various domains

IBM a key contributor to behavioral modeling

 Incorporates state of the art Software and Systems A&D
concepts

 Matches the growing complexity of real-time systems
Large scale systems, Networking, Web enabling, Data management

 Extensible and configurable

 Unprecedented inter-disciplinary market penetration

 UML 2.1 is latest version

9

UML 2 diagrams

Communication

Diagrams

Sequence

Diagrams

Interaction
Diagrams

Class
Diagrams

Deployment

Diagrams

Component

Diagrams

Object
Diagrams

Structural

Diagrams

State Machine

Diagrams

Timing

Diagrams

Activity

Diagrams

Behavioral

Diagrams

Use Case

Diagrams

Package
DiagramsStructure

Diagrams

Interaction

Diagrams

10

Use case diagram

 This diagram shows what the system does and who

uses it.

11

Sequence diagram

Sequence Diagrams show how instances

communicate over time.

12

Class diagram

Class diagrams show classes and relations between

them.

13

Object diagram

Object Diagrams show instances of classes and

show which ones are linked to others at run time.

14

Structure diagram

 This diagram shows the internal structure of classes.

15

State machine diagram

State machines are used when you need to wait until

something happens before going to a different state.

16

Activity diagram

Activity diagrams are used to

describe behavior for

operations, classes, or use

cases. As soon as one activity

finishes, the next one starts.

17

Package diagram

 A package is similar to a folder and is used to

organise the UML model elements.

18

Communication diagram

 This used to be known as a Collaboration Diagram

and is similar to a Sequence Diagram, but generally

less popular.

19

Component diagram

A component diagram shows how components such

as .exe, .dll, .lib, are interconnected.

20

Deployment diagram

 A Deployment Diagram shows how UML artifacts are

deployed onto hardware nodes.

21

Timing diagram

Time

Sending::Low

Sending::High

Receving::Low

Receiving::High

Sending

Receiving

Idle

Coil Driver

Transceiver

transmit(value)

Tristate

Monitor

Initializing

Acquiring

Reporting

Idle

send(value)

send(value)

tm(bitTime)

{1 ms +/- 0.2ms}

{3 ms +/- 0.2ms}

evDone

 The Timing Diagram focuses on changing conditions

within and among objects on a linear time axis.

22

Interaction overview diagram

sdsd

ref

dispatch_event

 An Interaction Diagram is a mixture of an Activity

Diagram and several Sequence Diagrams.

23

How does UML apply to real-time?

Real-Time UML is standard UML

 “Although there have been a number of calls to extend
UML for the real-time domain … experience had proven
this is not necessary.” Bran Selic, Communications of the
ACM, Oct 1999

Real-time and embedded applications

Special concerns about quality of service (QoS)

Special concerns about low-level programming

Special concerns about safety and reliability

Real-time UML is about applying the UML to meet the
specialized concerns of the real-time and embedded
domains

24

How do you describe structure using UML?

25

An object is one of the common building blocks in
a UML model. It can represent a system, a
subsystem or a specific software class in a
programming language.

Several definitions are available:

An object is a real-world or conceptual thing that has
autonomy.

An object is a cohesive entity consisting of data and the
operations that act on those data.

An object is a thing that has an interface that enforces
protection of the encapsulation of its internal structure.

What is an object ?

26

What is an object ?

Every object has:

Responsibilities:

 What does the object do? Why does it exist?

Attributes:

 This is the internal data and can either be fixed in

value or can vary in value.

Behaviors:

 These are actions performed by the object to fulfil its

responsibilities.

27

A radio

Responsibilities:

Allow the user to listen to desired radio
frequency

Attributes:

Wavelength

Frequency

Volume

Behaviors:

Tune to a frequency

Store / Recall a frequency

Change volume

Switch on / off

28

A digital camera

Responsibilities:

Take digital photos

Attributes:

Available Memory

Picture Resolution

Battery Level

Behaviors:

Select Resolution

Focus

Take Photo

Upload Photos

29

A microwave oven

Responsibilities?

Attributes?

Behaviors?

30

Objects can be …

 Software things
Occupy memory at some point in time

For example, CustomerRecord, ECGSample, Window, Font

 Electronic things
Occupy physical space at some point in time

For example, Thermometer, LCDDisplay, MotionSensor, DCMotor

 Mechanical things
Occupy physical space at some point in time

For example, WingSurface, Gear, Door, HydraulicPress

 Chemical things
Occupy physical space at some point in time

For example, Battery, GasMixture, Halothane

 System things
Occupy physical space at some point in time

For example, PowerSubsystem, RobotArm, Space Shuttle

31

All objects are unique even if their attributes are the
same as another.

 For example, in this room, there are probably many
mobile phones, of which several might well be
identical. Even if they are identical, they are all
unique.

Object identity

Andy’s

phone

Colin’s

phone

Ian’s

phone

32

Objects have generally two
different views:
Public view:

 This is the view that can be seen
from outside of the object.

Private view:

 This is the internal only view,
access is controlled and the details
are hidden from the outside world.

Object views

33

Object interface

The Public view of an object is the interface that the object
exposes to the outside world and which other objects can use to
communicate with it.

Objects contain their own attributes and generally do not allow
other objects to directly manipulate these attributes.

If other Objects need access to the attributes, then the object
provides public operations (known as getters and setters) to
manipulate these attributes.

This allows the freedom to change the type of the attribute
without the clients knowing about it or indeed having to make
any changes. All that is needed is to modify the getter and setter
to manipulate the new attribute type.

Getters and Setters are
sometimes called Accessors
and Mutators.

34

Object attributes

Attributes are typed values holding information
known to the object, for example:

value: int

patientName: string

All objects of the same type have the same set of
attributes but different copies (hence they may
have different values).

Attributes are primitive in structure and behavior:

If they are rich, then they should be themselves objects.

35

Object operations

Objects execute operations to implement behavior:

Operations are primitive behaviors such as:

 ++x

 y = sin(x)^2 + cos(x)^2

 z = mySensor->getValue()

Operations can manipulate the attributes, call other
operations.

Operations can be invoked from other objects as
well as from a state machine or activity diagram
attached to the object.

36

UML class
 A Class is the definition or specification of an object.

 An object is an instance of a class.

 An object has the attributes and behaviors defined by its class.

 A class can be shown on a Class Diagram in one of many ways.

 On some diagrams, you might want to show just the name of the
class.

 Sometimes, you might want to show just the operations; other
times, you might want to show all attributes and all operations.

Attributes

Operations

Name

37

UML object

As with a class, an Object (also known as an
Instance) can also be shown on a Class/Object
Diagram in many ways:

It is not
necessary to
show every
attribute, every
operation,
visibility, …

Attribute

values at

a specific

instance in

time

Object name Class name

Implicit

object

Multiplicity

38

Multiplicity

When showing Objects, you need to indicate how
many objects there are.

 This is done with the Multiplicity, which most of the
time is 1.

39

Visibility defined

 Attributes and Methods or Operations are features of a
class.

 Features have the visibility adornments:

+ public

 Accessible by any client of the class.

# protected

 Accessible only from within the same class or subclasses.

- private

 Accessible only from within the same class.

Rather than using
these symbols,
Rational Rhapsody
uses more graphical
ones which are easier
to understand.

40

Constructors and destructors

Every Class has a couple of special operations
allowing Objects to be constructed / destroyed.

A constructor is always called when an Object is
created and generally initializes its attributes.

A destructor is always called when the Object is
destroyed and ensures that any allocated resources
are properly returned.

Constructor

Destructor

41

Static and abstract operations

A static operation is shown underlined.

An abstract operation is shown in italic.

42

Exercise 1

What are the attributes, operations and
responsibilities of the following?

43

Hello World

How do you describe behavior – Part 1?

44

Types of behavior

Behavior can be simple:
Simple behavior does not depend on the object’s history.

Behavior can be continuous:
Continuous behavior depends on the object’s history but

in a smooth, continuous fashion.

Behavior can be state-driven:
State-driven behavior means that the object’s behavior

can be divided into disjoint sets.

45

Simple behavior

 Simple behavior is not affected by the object’s
history:

cos(x)

getTemperature()

setVoltage(v)

Max(a,b)



 It may be represented by activity diagrams, if
desired.

46

 Object’s behavior depends on history in a continuous way

PID control loop:

Digital filter:

Fuzzy logic:

 Uses partial set membership to compute a smooth, continuous
output

Continuous behavior

Ka

Xn Yn

-
+ Delay

Wn

Kb

+
+Vn

Zn

UML is not very good

at describing

continuous behavior.

47

Useful when an object
Exhibits discontinuous modes of behavior

Waits for and responds to incoming events

 For example a Light can be :

Off

On

Flashing

State behavior

48

Why use state machines?

A state machine is an abstraction of the desired
behavior of a system with actions, activities, and
constraints.

An object’s behavioral possibilities are defined in a
primitive way by its defined operations.

A state machine constrains the use of those
operations into particular sequences.

 Thus constrained, the object’s behavior is more
understandable and more easily tested.

State machines are a more abstract view of
behavior, based on the object’s perspective not the
implementation.

49

State machines are executable

 Because state machines are formally defined, they form
executable models.

 State machines can be executed and visualized at the
design level of abstraction.

 State machines can be animated - their dynamic behavior
shown graphically:
Standard debugging can be done, such as setting breakpoints, step

through, step into, and so on.

 You can focus on the abstract behavior:
Was the door locked with a card or a code?
Rather than, is some variable 0 or 1?

 State Machines provide for easy testing.

50

State machine execution

51

 What is a state?

 What is a transition?

What is an action?

States / transitions / actions

A transition is a response

to an event of interest moving

the object from a state to a state.

A state is a distinguishable,

disjoint, orthogonal condition of

existence of an object that

persists for a significant period of

time.

An action is a run-to-completion

behavior. The object does not

accept or process any new

events until the actions

associated with the current event

are complete.

52

Basic state machine syntax

Guard

TransitionState

State name
Trigger

Action List

Default

Transition

 Transition syntax

trigger [guard] / action list

53

Entry / exit actions

Note the order of

execution of the actions

and that the guard gets

checked before any

actions are taken.

Entry actions

Exit actions

54

Types of events

UML defines 4 kinds of events:
Signal Event

 Asynchronous signal received for example, evOn,
evOff

Call Event

 Operation call received, for example, opCall(a,b,c)

 This is known as a Triggered Operation in Rational
Rhapsody

Change Event

 Change in value occurred

Time Event

 Absolute time arrived

 Relative time elapsed, for example,
tm(PulseWidthTime)

55

Time event

When an object enters a state, any Timeout from
that state is started. When the Timeout expires, the
state machine receives the expiration as an event.

When an object leaves a state, any timeout that was
started on entry to that state is cancelled.

Only one timeout can be used per state; nested
states can be used if several timeouts are needed.

Entry action
Time event

Exit action

56

tm(delayTime)

 tm(delayTime) is specific to
Rational Rhapsody and
code is automatically
generated to start and stop
the timeout.

 This is equivalent to the
second state-chart where a
timer is started on entering
the state and stopped on
exiting the state. If the timer
expires, then it would send
the requested event, for
example, evDelay.

UML actually defines the

keyword after(Delay)

instead of tm(Delay).

57

Handling transitions

 If an object is in a state S that responds to a named
event evX, then it acts upon that event.

 It transitions to the specified state, if the event
triggers a named transition and the guard (if any) on
that transition evaluates to TRUE. It executes any
actions associated with that transition.

 It handles the event without changing state if the
event triggers a named reaction and execute all the
list of actions associated with that reaction.

58

Handling transitions

Events are quietly discarded if:

A transition is triggered, but the transition’s guard
evaluates to FALSE.

A transition to a conditional pseudostate is triggered, but
all exiting transition guards evaluate to FALSE.

The event does not explicitly trigger a transition or
reaction.

 If an event cannot be handled, then UML allows an
option where the event can be deferred until a
suitable time when it can be handled.

Rational Rhapsody

does not yet handle

deferred events.

59

Reaction in state

A reaction in state is an

event that is handled

without exiting the state.

Reaction

in state

Condition connector

Parameter

passed

with event

60

 A guard is some condition that must be met for the transition
to be taken.

 Guards are evaluated prior to the execution of any action.

 Guards can be:

Variable range specification, for example: [cost<50]

Concurrent state machine is in some state [IS_IN(fault)]

Transitions: Guards

If two guards are likely to

be true at the same time,

then it is a good idea to

chain condition connectors,

so that the order in which

the guards are tested is

known.

61

Actions

Actions are run to completion:
 Normally actions take an insignificant amount of time to

perform

 They may be interrupted by another thread execution, but
that object will complete its action list before doing
anything else

Actions are implemented via:
 An object’s operations

 Externally available functions

 They may occur when:
 A transition is taken

 A reaction occurs

 A state is entered

 A state is exited

Do not use actions

that block.

For example reading

a socket.

62

Null-triggered transitions

Also known as Completion Transitions.
 Triggered upon completion of any entry actions.
May contain a guard condition.
Will only be evaluated once, even if guard

condition later becomes true.

On entering the polling

state, since there is no

trigger, the guard is

immediately tested. If

it is true, the object

moves to the ready

state. The guard is

retested every time

that the timeout

occurs.

63

State machine syntax – OR states

An object must always be in exactly one OR-state at
a given level of abstraction.
 The object must be in either off or on or delay – it cannot

be in more than one or none.

64

Exercise 2: luggage belt system

Draw the state machine for a luggage belt system.
The belt is started when the start button is pressed
and runs until either the stop button is pressed or
until there is no luggage on the belt. This condition
is when no luggage has been detected in the
previous 60 seconds.

65

Count Down

How do you describe behavior Part 2?

66

State machine syntax – nested states

Nested

state

If the event evDisarm is received when the

object is in state armed, then irrespective of

which nested state is active, the transition will

be taken and the object will go into the off state.

67

Exercise 3: LED

Draw the state machine for an LED class that can
be in one of three modes: on, off and flashing at
1Hz.

68

 When an event is received, it is processed in order, starting
with the inner most state until the event is processed. For
example, if the event evMove is received then:

Nested states: hierarchical events

If the active state is

up, then the object

goes to the down

state.

If the active state is

down, then the object

goes to the up state.

If however, the active

state is stationary,

then the object prints

out evMove not

handled.

69

UML pseudostates

T

C H*

or

Symbol Symbol Name

H

Branch Pseudostate (type of

junction pseudostate)

Terminal or Final Pseudostate

Initial or Default Pseudostate

Fork Pseudostate Join Pseudostate

Junction Pseudostate

(Shallow) History

Pseudostate

(Deep) History Pseudostate

Choice Pseudostate

EntryPoint Pseudostate

[g]

[g]

Symbol Symbol Name

ExitPoint Pseudostate

label

You cannot draw a choice Pseudostate in Rational Rhapsody,

but the same effect can be achieved by replacing it with a state.

70

Exercise 4: mouse

Draw the state machine for the following
mouse that has three extra buttons:

One of these buttons allows the Mouse to
magnify the area around the mouse. This
magnify mode is invoked and exited by
pressing the magnify button (evMagnify).

When in the magnify mode, if the magnify
button is held (evMagnifyHeld), then the up
(evUp) and down (evDown) buttons control the
magnification, invoking operations
incMagnification() and decMagnification(). It
remains in this mode until the magnify button is
released (evMagnifyReleased).

When the magnify button is not held, the up
(evUp) and down (evDown) buttons invoke
operations up() and down().

71

AND-states

When a state has multiple AND-states, the object
must be in exactly one substate of each active AND-
State at the same time.

AND-states are logically concurrent.

All active AND-states receive their own copy of any event
the object receives and independently act on it or discard
it.

Cannot tell in principle which and-state will execute the
same event first.

Not necessarily concurrent in the thread or task sense.

UML uses active objects as the primary means of
modeling concurrency.

AND-states may be implemented as concurrent threads,
but that is not the only correct implementation strategy.

72

State machine syntax AND states

AND states Orthogonal state separator

Both sides handle the same event

73

AND-state communication

 AND-states may communicate via:

Broadcast events

 All active AND-states receive their own copy of each received

event and are free to act on it or discard it.

Propagated events

 A transition in one AND-state can send an event that affects

another.

Guards

 [IS_IN(state)] uses the substate of an AND-state in a guard.

Attributes

 Since the AND-states are of the same object, they “see” all the

attributes of the object.

IS_IN is a Rational Rhapsody

C++ macro that can be used to

test to see if an object is in a

particular state.

74

State machine syntax – connectors

Initialise both history

and default state

75

Submachines: parent

Stub state connector Submachine reference

76

Submachines: child

Stub state

connector

Submachine

77

Timeouts revisited

What is the output of the following state
machine?

78

Poorly formed state machine

Overlapping

guards

No default

state

Race condition

Conflicting

transitions

Use before initialization

Must be same event History not initialized

79

Inherited state behavior 1

 Two approaches to inheritance for generalization
of reactive classes:
 Reuse (for example, inherit) state machines of parent
 Use custom state machines for each subclass

Reuse of state machines allows:
 Specialization of existing behaviors
 Addition of new states and transitions
 Makes automatic code generation of reactive classes

efficient in the presence of class generalization

80

Inherited state behavior 2

Subclasses may be:
 Specialized:

 Sub-states may be added

 Transitions may be rerouted

 Action lists may be modified
 Extended:

 New states added

 New transitions added

 New action lists added

81

Inherited state behavior 3

Assumes Liskov substitution principle for
generalization:
You can:
 Add new states
 Elaborate sub-states in inherited states
 Add new transitions and actions

You cannot:
 Delete inherited transitions or states

A subclass must be freely substitutable for the

super-class in any operation.

82

Example: Generalization

Modified action list

New sub-states

and transitions

New AND-states

83

Exercise 5: Battery charger

 Draw the state machine for a simple Battery
Charger that can charge two batteries in
parallel. The charger has three modes: idle,
discharging, and charging.

 A button can be pressed (evStart) to start
charging the batteries. However, before each
battery can be charged, it must be discharged.

 When each battery is discharged, it sends an
event (evBatteryA_Discharged or
evBatteryB_Discharged) to the Battery
Charger.

 When each battery is charged, it sends an
event (evBatteryA_Full or evBatteryB_Full) to
the Battery Charger.

 When both batteries are charged, the Battery
Charger returns to the idle mode.

84

How do you model communication using UML?

Dishwasher

85

Objects work together to form cohesive
assemblies called collaborations.

Collaborations work by the fulfillment of system-
level behaviors called use cases via their
behaviors and operations.

Autopilot

Sensor

Engine

ControlSurface

setSpeed ()

setFlapPosition()

getData()

Object collaboration

86

 Objects communicate between each other via
messages

 Messages may be:

Synchronous for example, Function call

Asynchronous for example, Posting OS message

Messages

87

 In order to send a message to another object,
there must be some kind of relationship
between the objects:
Objects may use the facilities of other objects with

an association.

Objects may contain other objects with an
aggregation.

Objects may strongly aggregate others via
composition.

Classes may derive attributes and behaviors from
other classes with a generalization.

Classes may depend on others via a dependency.

Association, Aggregation, and Composition allow
objects to communicate at run-time.

Relationships

Generalization basically

implies Is a Kind of.

88

Allow instances of classes to communicate at run-
time:

Instances of associations are called links.

Links may come and go during execution.

Denote one object using the facilities of another.

 Lifecycles of the objects are independent.

Allow objects to provide services to many others.

Associations 1

89

 Associations may have labels:

 This is the name of the association.

 Associations may have role names:

 Identifies the role (or responsibility) of the object in the
association.

 Associations may indicate multiplicity:

 Identifies the number of instances of the class that
participate in the association.

 Associations may indicate navigation with an open arrowhead:

 Unadorned associations are assumed to be symmetric

 Most associations are unidirectional.

Associations 2

90

Denotes the number of instances of the related
classes that participate in the association.

Options:

N fixed number, for example, 1, MAX_ELEVATORS

* Zero or more

1..* One or more

X..Y range, for example, “0..1” or “5..7”

Multiplicity

Most associations

have multiplicity 1.

91

Associations - 3

Multiplicity
Relation Name

Role name

Navigation

92

 Indicated by a hollow diamond

Whole-part relationship denotes one object logically
or physically contains or has another

Weaker form of aggregation. Nothing is implied about:

Navigation

Ownership

Lifetimes of participating
objects

Aggregation

93

Aggregation

Multiplicity of owners > 1 indicates a
shared part.

 Forms a graph with its parts.

By forming a graph,

it mean that a class

can aggregate itself

(although it must be

a different instance)

but in composition

you can’t

(compositions can

only form trees).

{Shared}

94

 Indicated by containment or a filled diamond.

Whole both creates and destroys part objects.

Composite is a higher level abstraction than the
parts:
 Allows the class model to be viewed and

manipulated at many levels of abstraction

Stronger form of aggregation:
 Implies a multiplicity of no more than one

with the whole

 Forms a tree with its parts.

Composition

95

Composition example

 This diagram shows that the PC creates instances

of the other three classes, but it is not clear if the

relations between the instance of the Motherboard

to the GraphicsCard and USBCard get initialized.

96

Structured class example

With a structured class, you can clearly see that the

PC is composed of instances of USBCard,

Motherboard, and GraphicsCard and that the

relations between these instances are initialized.

Part

Connector / Link

97

Qualified association

Used with a relation of multiplicity *.

Allows the relation to be sorted according to the
value of an attribute.

Qualifier

A Qualified

association could be

implemented as a

balanced tree.

98

Association class

An association class is used when information does
not seem to belong to either object in the association
or it belongs equally to both.

Association

class

99

Template / generic classes

Some languages such as C++, Ada, C#, and Java
allow the use of template or generic classes. The
UML allows template / generic classes to be drawn.

Template

argument

100

 A dependency can be used when a class has no direct
relation to another class, but uses it in some way.

 The «stereotype» details how the item is dependent on
the other.

Dependencies

101

Generalization 1

 Generalization means two things in the UML:

Inheritance

The child acquires things from the parent(s). In

UML, a child class acquires the attributes and

operations (including state machines) from the

parent class(es).

Substitutability

 It is satisfactory to use the substitute instead of

the intended item. In UML, a substituted object

(instance) performs satisfactorily.

102

Generalization 2

 Subclass is-a-type-of the superclass.

 UML generalization means:

Subclass inherits structure and behavior from the
superclass:

 Attributes

 Operations

 Relations

 State Machine or Activity Diagram

 Instances of subclass are freely substitutable for
instances of the superclass.

103

 Liskov substitution principle:
“An instance of a subclass must be freely
substitutable for an instance of its superclass”.

An object with a relation to a general object should
be able to use the general object's derived objects
without knowing it.

Generalization substitutability

Print!

104

Generalization 3

Generalization is shown with a solid line and
closed arrowhead pointing to the more general
class.

Generally the Super

Class is always

shown above the

Sub Class.

Generalization

105

Generalization 4

Subclasses may be extended by adding:

New attributes

New operations

New attributes

New operations

106

Generalization 5

Subclasses may be specialized by:

Redefining existing operations

Virtual

operations
Inherited

operation

New attribute

New operation

Specialized

operations

107

Queue and CachedQueue
 If the Client is using the

Queue, then you could
replace the Queue by the
CachedQueue without
needing to change the
Client’s code.

The Client calls the

insert operation

without knowing if it is

the Queue or the

CachedQueue which

is being used.

itsQueue->insert(“abc”);

108

Good generalization

 These are all different types of buttons, all having

different behavior.

109

Bad generalization

 These are all basically the same class.

 They should all be of the class Button, with

perhaps just an attribute indicating the type

of button.

110

Ugly generalization

Beware of multiple generalization:

This is also known as the Diamond of Death.

Gets two copies of

Attribute id.

Which execute

is run?

111

Exercise 6

 An elevator system will have two
elevators and eight floors.

 Each floor will have a couple of
buttons to call the elevator.

 Each button has an indicator
indicating that it has pressed.

 Each elevator will have a button and
corresponding indicator for each
floor.

1. Draw the class diagram.

2. Draw two different scenarios.

Drawing the scenarios help in

verifying that the class diagram is

correct.

112

Elevator system: Class diagram

113

Elevator system: Scenario 1

114

Elevator system: Scenario 2

115

Interfaces: why do you need them?

 In the following model, when the button gets
pressed, it invokes the press() operation on the
application, for example:

 It is difficult to reuse the Button class since it is
closely associated or coupled with the Application
class.

itsApplication->press();

116

Interface IButtonListener

 You could add a new class to isolate the Button from the
Application. This class would be what is called an Interface
class and would have just abstract operations having no
implementation.

 The application classes would realize the IButtonListener
class and implement the press() operation.

Abstract

operation

itsIButtonListener->press();

Realization

117

Interfaces

 An interface is a named collection of operations.

 UML interfaces specify only messages or operations.

 UML Interfaces have no implementation and generally have
no attributes.

 Classes realize an interface by providing a method
(implementation) of an operation:

A class that realizes an interface is said to be compliant with that
interface.

Classes may realize any number of interfaces.

Interfaces may be realized by any number of classes.

To make Interface classes more

apparent, they are often named

starting with an I. The name of the

class and the abstract operations

are generally italicized.

118

The Ball is sometimes

referred to as a lollipop.

To recall if

means required or provided,

think that there is an O in

prOvided.

Ball and Socket notation

 Another way to draw an interface class and the
realization of an interface is to use the Ball and Socket
notation:

Provided interface

Required interface

119

Advanced Rational Rhapsody

Avoiding common

mistakes

120

Dead lock situation 1





121

Dead lock situation 2

122

Transition or reaction in state?

Reactions in state

123

Null transitions

Each time a state is entered, Rational Rhapsody
checks to see if there is a null transition that could be
taken. If there is, then the transition is taken.

In the following example, there is no stable state since
every state has a null transition with a guard that evaluates
to True.

 In this case, the following message is displayed: Infinite
loop of Null Transitions.

A Null Transition

is a transition that

has no trigger.

124

What is done first?

When in the waiting state, what happens when the
evCoin event is received?

Answer : The value of coin is tested BEFORE it gets assigned!

125

Where to find out more

Cash Register

126

Page left intentionally blank

