Embedded System Design

Lab Cortex-M4

Machine Learning (Deep Learning, Artificial Neural Network) using Microcontroller: Embedded Al

Human Brain vs Computer

History of AI

A.I. TIMELINE

1950

TURING TEST

Computer scientist Alan Turing proposes a intelligence' is coined test for machine intelligence. If a intelligence

1955

A.I. BORN

Term 'artificial by computer scientist, John McCarthy to describe "the science making intelligent machines"

1961

First industrial robot, Unimate, goes to work at GM replacing assembly line

1964

Pioneering chatbot developed by Joseph Weizenbaum at MIT

1966

The 'first electronic person' from Stanford, Shakey is a generalpurpose mobile robot

A.I.

WINTER

Many false starts and dead-ends leave A.I. out 1997

DEEP BLUE

Deep Blue, a chess-Kasparov

1998

Cynthia Breazeal at MIT playing computer from introduces KISmet, an IBM defeats world chess emotionally intelligent robot insofar as it detects and responds to people's feelings

1999

AIBO

consumer robot pet dog autonomous robotic skills and personality that develop over time

2002

ROOMBA

vacuum cleaner from iRobot learns to navigate interface, into the and clean homes

2011

an intelligent virtual assistant with a voice iPhone 4S

2011

Watson wins first place on popular \$1M prize Jeopardy

2014

Eugene Goostman, a chatbot passes the Turing Test with a third assistant with a voice of judges believing Eugene is human

2014

Amazon launches Alexa, Microsoft's chatbot Tay an intelligent virtual interface that completes inflammatory and shopping tasks

2016

media making offensive racist 2017

ALPHAGO

Google's A.I. AlphaGo beats world champion board game of Go, notable for its vast number (2170) of

Neural Net CPU

"My CPU is a neural-net processor; a learning computer."
- T-800 - Terminator 2: Judgment Day

The **Neural Net CPU** is a "learning computer" and one of the most powerful microprocessors ever built. All of the battle units deployed by Skynet contain a Neural Net CPU.

Housed within inertial shock dampers within each battle unit, the CPU gives Skynet the ability to control it's units directly, or allow them to function by themselves, learning from a preprogrammed knowledge base as they go. This means that each battle unit has the potential to adapt to its situation, and

Cameron's CPU

literally reason through problems and tactical maneuvers. In the case of the various Terminator series, this means that they can learn to behave more like humans in order to be better equipped for infiltration.

It is developed by Miles Bennett Dyson, director of Special Projects at Cyberdyne Systems Corporation, via reverse engineering on the wreckage of a T-800 Terminator in 1984.

AI,ML,DL

Neuron

Biologically Inspired

- Electro-chemical signals
- Threshold output firing

The Perceptron

- Binary classifier functions
- Threshold activation function

The Perceptron: Threshold Activation Function

- Binary classifier functions
- Threshold activation function

Linear Activation functions

Output is scaled sum of inputs

$$y = u = \sum_{n=1}^{N} w_n x_n$$

Nonlinear Activation Functions

Sigmoid Neuron unit function

$$y_{hid}(u) = \frac{1}{1 + e^{-u}}$$

Nonlinear Activation Functions

ReLU (Rectified Linear Unit)

Geoffrey E Hinton University of Toronto

Model of a single neuron

Neuron Model

$$u_k = \sum_{j=1}^m w_{kj} x_j$$

Adder, weighted sum, linear combiner

$$v_k = u_k + b_k$$

Activation potential; b_k : bias

$$y_k = \varphi(v_k)$$

Output; φ : activation function

Layered Networks

SISO Single Hidden Layer Network

• Can represent and single input single output functions: y = f(x)

Training Data Set

- Adjust weights (w) to learn a given target function: y = f(x)
- Given a set of training data $X \rightarrow Y$

Training Weights: Error Back-Propagation (BP)

Weight update formula:

$$w(k+1) = w(k) + \Delta w$$

$$\Delta w(i) = \eta * \frac{\partial e(i)}{\partial w}$$

Error Back-Propagation (BP)

Training error term: e

Example: The XOR Problem

- Single hidden layer: 3 Sigmoid neurons
- 2 inputs, 1 output

Desired I/O table (XOR):

	x1	x2	у
Example 1	0	0	0
Example 2	0	1	1
Example 3	1	0	1
Example 4	1	1	0

Example: The XOR Problem

Training error over epoch

Example: The XOR Problem

• Mapping produced by the trained neural net:

	х1	x2	у
Example 1	0	0	0.0824
Example 2	0	1	0.9095
Example 3	1	0	0.9470
Example 4	1	1	0.0464

Embedded Al Example

MNIST Data Set

MNIST Data

MNIST Data

Embedded AI Example using MNIST Data Set

0-9 handwritten digit recognition:

28 x 28

MNIST Data maintained by Yann LeCun: http://yann.lecun.com/exdb/mnist/ Keras provides data sets loading function at http://keras.io/datasets

Training

- Training on PC
- Save neural network model
- Convert model to C program
- Compile and download to target

Neural Network Model

- n=28x28
- -m=10

Deep-Learning Software and Hardware Stack

Anaconda: Python Data Science Platform

Copy mnist_mlp.py, send_test.py to C:\work\Ananconda

Run Spyder

Open mnist_mlp.py

Saved model: mnist_mlp_model.h5

```
zo prini(x_train.snape[ν], train samples )
29 print(x_test.shape[0], 'test samples')
31# convert class vectors to binary class matrices
32 y train = keras.utils.to categorical(y train, num classes)
33 y test = keras.utils.to categorical(y test, num classes)
35 model = Sequential()
36 model.add(Dense(512, activation='relu', input shape=(784,)))
37 model.add(Dropout(0.2))
38 model.add(Dense(512, activation='relu'))
39 model.add(Dropout(0.2))
40 model.add(Dense(num classes, activation='softmax'))
42 model.summarv()
44 model.compile(loss='categorical crossentropy',
45
                optimizer=RMSprop().
46
                metrics=['accuracy'])
47
48 history = model.fit(x train, y train,
                      batch size=batch size,
50
                      epochs=epochs,
51
                      verbose=1.
52
                      validation data=(x test, y test))
53 score = model.evaluate(x_test, y_test, verbose=0)
54 print('Test loss:', score[0])
55 print('Test accuracy:', score[1])
57 model.save('mnist mlp model.h5')
```

```
Variable explorer
     File explorer
IPvthon console
Console 1/A 🛛
Epoch 11/20
60000/60000 [==
     Epoch 12/20
60000/60000 T
       Epoch 13/20
60000/60000 [=
      Epoch 14/20
60000/60000
             - 5s 92us/step - loss: 0.0228 - acc: 0.9937 - val loss: 0.1059 - val acc: 0.9828
Epoch 15/20
60000/60000 T=
     Epoch 16/20
Epoch 17/20
Epoch 18/20
Epoch 19/20
Epoch 20/20
Test loss: 0.09829121294636527
Test accuracy: 0.985
In [2]:
✓ IPython console History log.
```


New STM32 Project: ai

Minimum Heap Size: 0x2000

■ Enable USART2

Select Components from Software Packs Menu

- Select Application: SystemPerformance
- Select X-CUBE-AI: Core
- Then, Click OK

Click Software Packs and click

Platform Settings

Add network

Click Analyze and check memory

Validate on desktop

Generate Code and Build

Trained weight

```
Project Explorer 

□
                                       MX ai.ioc
                                                aiSystemPerformance.c
                                                                       1 #include "network data.h"
v 💯 ai
                                            2
  > 🐉 Binaries
                                            3 ai handle ai network data weights get(void)
    Includes
                                            4
  > 🐸 Core
                                            5
  Drivers
                                                AI ALIGNED(4)
  > # Middlewares
                                                static const ai u8 s network weights [ 690216 ] = {
  > 🐸 USB HOST
                                                  0x4e, 0xb1, 0x15, 0xbf, 0xd8, 0xa5, 0x14, 0xbf, 0x61, 0x9a,
                                                  0x13, 0xbf, 0xeb, 0x8e, 0x12, 0xbf, 0x75, 0x83, 0x11, 0xbf,
                                            9
  X-CUBE-AL
                                                  0xff, 0x77, 0x10, 0xbf, 0x88, 0x6c, 0x0f, 0xbf, 0x12, 0x61,
                                           10
    v 🗁 App
                                                  0x0e, 0xbf, 0x9c, 0x55, 0x0d, 0xbf, 0x26, 0x4a, 0x0c, 0xbf,
                                           11
       app_x-cube-ai.c
                                           12
                                                  0x4a, 0x2b, 0x0b, 0xbf, 0x39, 0x33, 0x0a, 0xbf, 0xc3, 0x27,

> In app_x-cube-ai.h

                                                  0x09, 0xbf, 0x8f, 0x7b, 0x08, 0xbf, 0xf6, 0xfa, 0x06, 0xbf,
                                           13
       > @ network data.c
                                                  0x60, 0x05, 0x06, 0xbf, 0xfb, 0x26, 0x05, 0xbf, 0x73, 0xee,
                                           14
       > In network data.h
                                                  0x03, 0xbf, 0x47, 0xc4, 0x02, 0xbf, 0x87, 0xd7, 0x01, 0xbf,
                                           15
       network.c.
                                                  0x11, 0xcc, 0x00, 0xbf, 0x35, 0x81, 0xff, 0xbe, 0x48, 0x6a,
                                           16
                                                  0xfd, 0xbe, 0x5b, 0x53, 0xfb, 0xbe, 0x6f, 0x3c, 0xf9, 0xbe,
                                           17
       > h network.h
                                                  0x6e, 0x6a, 0xf7, 0xbe, 0xad, 0x0a, 0xf5, 0xbe, 0x5c, 0xf5,
                                           18
         network_generate_report.txt
                                           19
                                                  0xf2, 0xbe, 0xbd, 0xe0, 0xf0, 0xbe, 0x5b, 0x54, 0xef, 0xbe,
     > 🗁 Target
                                                  0x32, 0x78, 0xed, 0xbe, 0x59, 0x66, 0xea, 0xbe, 0x98, 0x19,
                                           20
    In constants ai.h.
                                                  0xe8, 0xbe, 0x44, 0x62, 0xe5, 0xbe, 0x6d, 0x02, 0xe4, 0xbe,
                                           21
  Debug
                                           22
                                                  0x52, 0x87, 0xe2, 0xbe, 0x9f, 0x47, 0xe0, 0xbe, 0xad, 0xa5,
    MX ai.ioc
                                           23
                                                  0xdd, 0xbe, 0x67, 0x0f, 0xdc, 0xbe, 0xea, 0xa5, 0xda, 0xbe,
                                                  0x9b, 0xe9, 0xd7, 0xbe, 0x8c, 0xdf, 0xd5, 0xbe, 0xad, 0x5b,
                                           24

☐ STM32F407VGTX_FLASH.ld

                                                  0xd4, 0xbe, 0xc7, 0xb5, 0xd2, 0xbe, 0x05, 0x31, 0xcf, 0xbe,
                                           25
    STM32F407VGTX_RAM.ld
                                           26
                                                  0xad, 0x92, 0xcd, 0xbe, 0x2b, 0x49, 0xcb, 0xbe, 0x8e, 0xd2,
> 🐙 ai3
                                                  0xc8, 0xbe, 0x46, 0xf8, 0xc6, 0xbe, 0xb4, 0x16, 0xc5, 0xbe,
                                           27
> 💯 Serial
                                                  0x64, 0xd8, 0xc2, 0xbe, 0x0b, 0xa3, 0xc0, 0xbe, 0xd2, 0xb5,
                                           28
Ubidots
                                                  0xbe, 0xbe, 0x3f, 0xad, 0xbc, 0xbe, 0x8e, 0x93, 0xba, 0xbe,
                                           29
> WifiWeather
                                                        and anho anho and and anho anho anti
                                           20
```

Open aiSystemPerformance.c

Find from Edit menu: "input tensors" or go to the line 492

```
workspace_1.4.0 - 407ai/X-CUBE-Al/App/aiSystemPerformance.c - STM32CubeIDE
 File Edit Source Refactor Navigate Search Project Run Window Help
407ai.ioc
                                                                                                                                i aiSystemPerformance.c ⋈ startup_stm32f407vgtx.s i main.c
 Project Explorer 

□
                                                                                                                                                                                                                                                                   network_data.c
                                                                                                                         MON ALLOC ENABLE();

√ IDE 407ai

                                                                                                      521
                                                                                                                         aiObserverInit(&net exec ctx[idx]);
                                                                                                      522
       > 🐉 Binaries
                                                                                                                         observer heap sz = MON ALLOC MAX USED();
                                                                                                      523
       > 🛍 Includes
                                                                                                      524
       > 🕮 Core
                                                                                                      525 #endif
       Drivers
                                                                                                      526
      Middlewares
                                                                                                      527
                                                                                                                    MON_ALLOC_RESET();
            > 🗁 ST
                                                                                                      528
                                                                                                      529
                                                                                                                     /* Main inference loop */
       USB_HOST
                                                                                                      530
                                                                                                                    for (iter = 0; iter < niter; iter++) {</pre>

✓ 

✓ X-CUBE-AI

                                                                                                      531

√ Description

✓ App

✓ A
                                                                                                      532
                                                                                                                         /* Fill input tensors with random data */
                 aiSystemPerformance.c
                                                                                                      533
                                                                                                                         for (int i = 0; i < net exec ctx[idx].report.n inputs; i++) {</pre>
                 > laiSystemPerformance.h
                                                                                                                              unsigned char string[28 * 28][3];
                                                                                                      534
                 > aiTestHelper.c
                                                                                                      535
                                                                                                                              ioRawReadBuffer((unsigned char*)string, 28 * 28 * 3);

    aiTestHelper.h

                                                                                                      536
                                                                                                                              for (ai_size j = 0; j < 28 * 28; j++) {
                                                                                                                                   if (string[j][0] == ' ') string[j][0] = '0';
                                                                                                      537
                 aiTestUtility.c
                                                                                                                                   if (string[j][1] == ' ') string[j][1] = '0';
                                                                                                      538
                 > la aiTestUtility.h
                                                                                                      539
                 > app_x-cube-ai.c
                                                                                                      540
                                                                                                                              const ai buffer format fmt = AI BUFFER FORMAT(&ai input[i]);
                 > h app_x-cube-ai.h
                                                                                                      541
                                                                                                                              ai i8 *in data = (ai i8 *)ai input[i].data;
                 > le network_data.c
                                                                                                                              for (ai size j = 0; j < AI BUFFER SIZE(&ai input[i]); ++j) {</pre>
                                                                                                      542
                 > In network data.h
                                                                                                                                   /* uniform distribution between -1.0 and 1.0 */
                                                                                                      543
                                                                                                                                   //const float v = 2.0f * (ai_float) rand() / (ai_float) RAND_MAX - 1.0f;
                                                                                                       544
                 network.c
```

Modify aiSystemPerformance.c

```
/* Fill input tensors with random data */
for (int i = 0; i < net exec ctx[idx].report.n inputs; i++) {</pre>
  unsigned char string[28 * 28][3];
  ioRawReadBuffer((unsigned char*)string, 28 * 28 * 3);
 for (ai_size j = 0; j < 28 * 28; j++) {
    if (string[j][0] == ' ') string[j][0] = '0';
    if (string[j][1] == ' ') string[j][1] = '0';
 const ai buffer format fmt = AI BUFFER FORMAT(&ai input[i]);
  ai i8 *in data = (ai i8 *)ai input[i].data;
  for (ai size j = 0; j < AI BUFFER SIZE(&ai input[i]); ++j) {</pre>
    /* uniform distribution between -1.0 and 1.0 */
    //const float v = 2.0f * (ai float) rand() / (ai float) RAND MAX - 1.0f;
    const float v = (100.0f^*(ai float)(string[j][0] - 0x30) + 10.0f^*(ai float)(string[j][1] - 0x30) +
                                                              (ai float)(string[i][2] - 0x30)) / 255.0f;
batch = ai mnetwork run(net_exec_ctx[idx].handle, ai_input, ai_output);
if (batch != 1) {
  aiLogErr(ai mnetwork get error(net exec ctx[idx].handle),
      "ai mnetwork run");
  break;
unsigned char recognized digit;
ai float out data float[10];
for (int j = 0; j < 10; j++) out data float[j] = *(ai float *)(ai output[0].data + j * 4);
recognized_digit = 0;
for (int j = 0; j < 10; j++) if (out_data_float[j] > out_data_float[recognized_digit]) recognized_digit = j;
printf("%d", recognized digit);
tend = cyclesCounterEnd();
```

Build and Download to the target board

Click OK

Connect USB-to-serial cable and find COM port

number

SmarTTY - Select a Connection

Double-click on a connection to begin:

pi@192.168.0.121

SSH, private key

Prolific USB-to-Serial Comm Port (COM3)

New Telnet connection...

♣USB S/N: 5&150202D2&0&2

Last used: yesterday

Baud rate: 115200

New SSH connection...

Do not open com port

Run send_test.py

Press RESET button(black button) and run send_test.py
Spyder (Python 3.7)

Change port number

Recognized digit: 6.

Recognized digit: 5.

Recognized digit: 7.

Recognized digit: 4.

Recognized digit: 2.

Results for "network", 16 inferences @168MHz/168MHz (comple

duration : 52.216 ms (average)

CPU cycles : 8772339 -75/+87 (average,-/+)

CPU Workload : 5%

cycles/MACC : 13 (average for all layers)

used stack : NOT CALCULATED

used heap : 0:0 0:0 (req:allocated,req:released) cfg=0

Exercise

- 주어진 예제를 실행하여 메모리 사용량 및 속도를 검토하고 실제 인식 성능을 확인한다.
- ■모델에서 코드 생성 시 컴프레션을 하는 이유는 메모리 사용량을 줄여서 프로그램 메모리에 탑재 가능하도록 하기 위함이다. 컴프레션을 하지 않을 경우 아래 그림과 같이 플래쉬 메모리 용량 초과로 실행이 불가능하게 된다.

Exercise

■ 뉴럴네트웍 모델에서 뉴런의 숫자를 줄인다면 컴프레션을 하지 않아도 메모리에 탑재가 가능하게 할 수 있다. 뉴런의 개수를 줄여서 컴프레션을 하지 않고도 프로그램 메모리에 탑재할 수 있도록 한다. 이때, 뉴런을 줄이지 않고 컴프레션을 한 경우와, 뉴런을 줄여서 컴프레션을 한 경우의 체감 인식 성능을 비교해 본다.