| Embedded System Design

Lab Cortex-M4

12C Oled Display

I2C protocol — Background

= Inter-Integrated Circuit Protocol

= |2C is a low-bandwidth, short-distance, two-wire interface for communication
amongst ICs and peripherals

» Qriginally developed by Philips for TV circuits

MICRO - LCD STATIC
CONTROLLER DRIVER RAM OR
A EEFROM

[sDa

[5oL

MICRO -
GATE CONTROLLER
B

ARRAY ADC

MBCESS

= Only two bus lines are required
= The SDA(for data) and SCL(for clock)

= Each device connected to the bus is software addressable
» Devices can be 7-bit or 10-bit addressed

|2C Features

Simple master-slave relation amongst devices (either can be receiver or transmitter)
Multi-bus master collision detection and arbitration is supported

Serial, 8-bit oriented, bi-directional data transfer can be achieved up to100 kbit/s
(and up to 3.4Mbit/s in the high speed mode)

Suppose Micro-controller A wants to send info to micro-controller B
1. A (master) addresses B(slave)
2. A (master-transmitter) sends data to B(slave-receiver)
3. Aterminates the transfer

Suppose Micro-controller A wants to receive info from micro-controller B
1. A (master) addresses B(slave)

2. A (master-receiver) receives data from B(slave-transmitter)
3. Aterminates the transfer

12C Bit-Transfer

»= One clock pulse is
generated for each data bit ~ soa /

| | "
that is transferred i i X i - 1
| | | \
| |

u Data Valldlty : data Iin_e | change |
| stable; | ofdata |
» The data on the SDA line | datavald o allowed |
must be stable during the
HIGH(1) period of the Vg
clock. The data line(SDA) pul-up Rpﬁ [I]Rp
can change data only SDA (Serial DataLine)
when the clock signal SCL (Serial Clock Line)

(SCL) is LOW(0) —

= Wired-and function

» open-drain or open-
collector

.\

DEVICE 1 DEVICE 2

12C START/STOP Conditions

» START condition: Signals begin of transfer (occupies the bus)
» AHIGH to LOW transition on the SDA line while the SCL is HIGH

= STOP condition: Signals end of transfer (releases the bus)
» ALOW to HIGH transition on the SDA line while the SCL is HIGH

» Both these are always generated by the Master

» Repeated START condition is allowed

» Repeated start is used for changing the slave, or changing the direction of data
transfer (Send/Receive) for the same slave

r r— —/
- - | -
SDA : \ l f : SDA
| [
| |
|
| |

START condition STOP condition

S T
™
e

|
|
l scL
| P

L— —

I
I
L

|2C Data Transfer

= Every byte on the SDA line must be 8-bits long

= Each byte must be followed by an acknowledgement from the receiver
» Data byte is transferred bit-wise with the MSB as the first bit sent

= Aslave can force the master to wait by holding the clock line SCL LOW

P
on TN
Sr
signal from slave signal from receiver

byte complete,
nterrupt within slave

clock line held low while

-
|
I
MSE acknowledgemeant acknowledgemeant |
interrupts are serviced |

scL | S | l | St
or 1 £ o f B 9 1 2 3-8 2} or
Sr P
|——J ACK ACK |——
START or STOF or
repeated START repeated START
condition condition

Acknowledgement Scheme

* The acknowledge-related clock-pulse is generated by the master

* The transmitter (master or slave) releases the SDA line i.e. SDA is HIGH for
the ACK clock pulse

* The receiver must pull-down the SDA line during the acknowledge clock
pulse (stable LOW) during the HIGH period of the clock pulse

.

CATA CQUTEUT | kY
BY TRANSMITTER

|

|
DATA OUTPUT

|

|

XX
! N nutacknowledge\
|
|

N,/

acknowledge

BY RECEIVER

SCL FROM
MASTER |

L 3]
START
condition

!

clock pulse for
acknowledgement

Acknowledgement Scheme

The receiver is obliged to generate an acknowledge after each byte received.

When a slave does not acknowledge slave address (when busy), it leaves the data
line HIGH. The master then generates either STOP or attempts repeated START.

If a slave-receiver does ack the slave address, but some time later during the
transfer can not receive more data (this is done by leaving SDA HIGH during the
ack pulse), then the master either generates STOP or attempts repeated START.

If a master-receiver is involved in a transfer, it must signal the end of data to the
slave-transmitter by not generating an ack on the last byte that was clocked out of
the slave. The slave-transmitter must release the data line to allow the master to
generate a STOP or repeated START condition.

Data Transfer With 7-Bit Device Address

» After START condition (S), a slave address(7-bit) is sent.
» Aread/write (R/W’) direction is then sent(8th bit)

» Data transfer occurs, and then always terminated by STOP condition.
However, repeated START conditions can occulr.

START ADDRESS RIW ACK DATA ACK DATA ACK ETOP
condition condition

Master-Transmitter to Slave-Receiver Data Transfer

* In this, the transmission direction never changes. The set-up and transfer is
straight-forward

S SLAVE ADDRESS RW“ 1 A DATA A DATAZ|AA P

o data transferred
0" (write) (n bytes + acknowledge)

from master to slave

A = acknowledge (SDA LOW)

A = not acknowledge (SDA HIGH)
S = START condition

P = STOP condition

from slave to master

10

Master-Receiver and Slave-Transmitter Data Transfer

» Master initiates the data transfer by generating the START condition
followed by the start byte (with read/write bit setto 1 i.e. read mode)

= After the first ack from the slave, the direction of data changes and the
master becomes receiver and slave transmitter.

* The STOP condition is still generated by the master (master sends not-ACK

before generating the STOP)

S SLAVE ADDRESS

/R!W A | DATA [A/ DATA

b
o

data transferred
(read) (n bytes + acknowledge)

11

Read and Write in the Same Data Transfer

» Change in direction of data transfer can happen by the master generating
another START condition (called the repeated START condition) with the
slave address repeated

» |f the master was a receiver prior to the change, then the master sends a
not-ack (A’) before the repeated START condition

S} SLAVE ADDRESS +'R/W/| A | DATA| A/A [Srl SLAVE ADDRESS }'R/W?| A | DATA|A/Al P

(n bytes (n bytes
., tack)* ~+ ack.)*
read or write

read or write direction
of transfer
* not shaded because » may change
transfer direction of Sr = repeated START condition at this point.

data and acknowledge bits
depends on R/W bits.

12

/-Bit Addressing

* The addressing info is contained in the first byte after the START condition

= The first 7 bits contain the address and LSB contains the direction of
transfer(R/W’ : 0 = write;1=read)

MSB LSB

R/W

\— slave address g

* When an address is sent, each device compares the first seven bits and
considers itself addressed.

» A slave address can be made up of a fixed and a programmable part
Y PCF8575 slave address

A
r N
1 | | 1 | | e
S|10 1 0 0 A2 A1 A0 RW| A
| | | | | | |

13

Multi-Master Clock Synchronization

» In the I2C bus, clock synchronization is performed using the wired-AND

» If at least one master clock goes from HIGH to LOW, then the SCL is held LOW
irrespective of the other masters’ clock.

» The SCL line goes to a HIGH state only when all the master clocks are in HIGH.

» The synchronized clock is generated with its LOW period determined by the device
with the longest clock LOW period and its HIGH period determined by the one with
the shortest clock HIGH period.

start counting
wait HIGH period

S W A .

-1 counter
CLK & reset \

14

Multi-Master Arbitration Using the Clock Syn.

= |f more than one device is capable of being a master, then an arbitration mechanism
IS needed to choose the master that takes control of the bus

= Arbitration takes place on the SDA, while the SCL is at the HIGH line,
» the master which transmits a HIGH level,

» another master is transmitting LOW level will switch off its DATA output stage because the
level on the bus does not correspond to its own level.

DATA
1
DATA
2

SOA

SCL

master 1 losas arbitration
| o DATA 1=5DA

-
|
i

|

)

:

r—
|r:.n
L |—

15

12C Conclusion

= Compared to other serial bus protocols like SPI and
Microwire

» The pin (and connection) requirements are the least in [2C
» The noise immunity is higher for 12C

» There is a feedback to the the transmitter (Ack signal) for
conveying the success of the transfer

» 1I2C now has fast and high speed modes of operation

16

New STM32 Project: oled

L5 sTM32 Project

Project Setup
Setup STM32 project

Project Name: ‘D|E.‘d|

Use default location

Options
Targeted Language

®Cc OCc++

Targeted Binary Type

Targeted Project Type
@ STM32Cube O Empty

@ Executable () Static Library

Location: C:/Users/limd]j/STM32CubelDE/workspace_1.1.0

Browse...

® < Back

Mext =

Finish

Cancel

17

" |2C, USART2, USART3

Pinout & Canfiguration Clock Configuration

Additional Software

{_5} [2C1 Mode and Configuration :
Bategaries | A >2
\J}'bllﬂlll e -
12C |i2C v

Analog b
Timers >
Connectivity b

CANT

CAMNZ
@ ETH

FSMC
@ 12C2

12C3 Configuration
@ SDID
/ SPI- Reset Configuration

SPi2 GPIO Settings

onstants

@ UART4 an
@ UARTS
@ USART1

: AR ‘? ~ Master Features

USARTE [2C Speed Mode Standard Mode
/ USB OTG FS [2C Clock Speed (Hz) 100000

USB OTG HS ~ Slave Features

Clock Mo Stretch Mode Disabled

18

» Copy ssd1306.c and fonts.c files to
C:\Users\imd)\STM32CubelDE\workspace 1.1.0\
oled\Core\Src

» Copy ssd1306.h and fonts.h files
C:\Users\imd\STM32CubelDE\workspace 1.1.0\
oled\Core\inc

main.c

/* USER CODE BEGIN Includes */

* MY Za e Ta

#include "ssd1306.h" VEc 6o $¢1 oA :
| Hello World

/85

#include "fonts.h"

[* USER CODE END Includes */ ARM Cortex-M3

[* USER CODE BEGIN 2 */
ssd1306_Init();
HAL_Delay(1000);
ssd1306_Fill(Black);
ssd1306 UpdateScreen();

HAL Delay(1000);

ssd1306_SetCursor(0, 0);
ssd1306_WriteString("Hello World", Font_11x18, White);
ssd1306_SetCursor(0, 50);
ssd1306_WriteString("ARM Cortex-M3", Font_7x10, White);
ssd1306 UpdateScreen();

[* USER CODE END 2 */

20

}

/* USER CODE BEGIN WHILE */
int counter;
unsigned char string[10];
while (1)
{
[* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
string[0] = counter / 100 + 0x30;
string[1] = (counter % 100) / 10 + 0x30;
string[2] = (counter % 100) % 10 + 0x30;
string[3] = 0;
ssd1306_SetCursor(40, 20);
ssd1306_WriteString(string, Font_16x26, White);
counter++;
if (counter > 999) counter = 0;
ssd1306 UpdateScreen();
HAL_Delay(10);

[* USER CODE END 3 */

21

* B2 A

YCC GND SCLISDA

§He11o World

|
f
785 ,
|
|

) (D)
Nt N

ARM Cortex-NM3

™
\’{.

Logic Analyzer Capture

a0+ < |

{} (global scope) L

void ssd1386 WriteCommand{uint8 t command)

-1

HAL TI2C Mem Write(&hi2c1,55D1306 _I2C_ ADDR,0x00,1,&command,1,18);

¥
I/
// Het scherm initialiseren woor gebhuiﬂ
[
uint8 t ssd1386_Init(void)

-1

/{ Even wachten zodat het scherm zeker opgestart is
HAL Delay(1@@);

f* Init LCD */
s5d1306 WriteCommand(@xAE); //display off
ss5d1306_WriteCommand(@x20); //Set Memory Addressing Mode

smazraochalizc< -+ |

[} (global scope) v v v
HAL_StatusTypeDef HAL_I2C_Mem_Write(I2C_HandleTypeDef *hi2c, uintl6_t DevAddress, uintl6_t MemAddress, uintl6_t MemAddSize, uintB8_t *pData, uintl6_t Size, uint32_t Timeout)

=1

Setup Write to [x (0x78)] + ACK '0" (0x00) + ACK '174' (OxAE) + ACK

22

Logic Analyzer Capture

= ACK

23

Logic Analyzer Capture

void ssd1386 UpdateScreen(void)
-1

uintd t 1i;

- for (1 =9; 1 < 8; i++) {
55d1306 WriteCommand(@xBe + i);
55d1306 WriteCommand(@x08);
55d1306_WriteCommand(@x18) ;

// We schrijven alles map per map weg
HAL_TI2C_Mem Write(&hi2c1,55D1306_I2C_ADDR,®x40,1,855D1306 Buffer[SSD1306_WIDTH * i],SSD1306_WIDTH,108);

Write [(0x78)] "0 (0X00) + ACK | "177" (0xB1) ¥ ACK Write [(0x78)] '0" (0%00)+ ACK"| | '0'(0%00) + ACK Write [x (0%78)] "0 (0X00) + ACK = | '167(0

write [x (0x78)] 10" (0x00) +ACK | | '167(0x10) +ACK Write [% (0%78)] @ (0%40) + ACK '07(0X00)+ ACK | '127" (0X7F)+ACK| 127/ (0X7F)+ACK | '17(0X01)+AL

l—i B 13.63 ys B 54.05 kiz I 18.5 s

24

