
AVR Assembly Language

Programming

1

Assembler Source

▪ The Assembler works on source files containing

instruction mnemonics, labels and directives. The

instruction mnemonics and the directives often take

operands.

▪ Every input line can be preceded by a label, which is an

alphanumeric string terminated by a colon. Labels are

used as targets for jump and branch instructions and as

variable names in Program memory and RAM.

▪ An input line may take one of the four following forms:

1. [label:] directive [operands] [Comment]

2. [label:] instruction [operands] [Comment]

3. Comment

4. Empty line
2

Assembler Source

▪ A comment has the following form:

; [Text]

▪ Items placed in braces are optional. The text between

the comment-delimiter (;) and the end of line (EOL) is

ignored by the Assembler.

▪ Examples:
label: .EQU var1=100 ; Set var1 to 100 (Directive)

.EQU var2=200 ; Set var2 to 200

test: rjmp test ; Infinite loop (Instruction)

; Pure comment line

; Another comment line

3

General Purpose Registers

▪ Lower Registers

4

General Purpose Registers

▪ Upper Registers

5

General Purpose Registers

▪ X-,Y-,Z-Registers

6

General Purpose Registers

▪ X-,Y-,Z-Registers

7

Special Function Registers

▪ Status Register(SREG)
The Status Register or SREG contains the important

information about the ALU such as the Carry Bit, Overflow

Bit, and Zero Bit. These bits are set and cleared during

ALU instructions. This register becomes extremely useful

during branching operations. The following table details the

bit assignments within the SREG.

8

Special Function Registers

▪ Stack Pointer
The Stack is mainly used for storing temporary data, for

storing local variables and for storing return addresses after

interrupts and subroutine calls. The Stack Pointer Register

always points to the top of the Stack. Note that the Stack is

implemented as growing from higher memory locations to

lower memory locations. This implies that a Stack PUSH

command decreases the Stack Pointer.

9

Special Function Registers

▪ Stack Pointer
The AVR Stack Pointer is implemented as two 8-bit Special

Function Registers, Stack Pointer High Register (SPH) and

Stack Pointer Low Register (SPL). The following diagram is

a representation of the Stack Pointer.

10

Special Function Registers

▪ Stack Pointer
The following example demonstrates how to initialize the

Stack Pointer. Remember to include the definition file for

the ATmega128 at the beginning of the program to utilize

Register naming schemes.

.include “m128def.inc” ; Include definition file in program

LDI R16, LOW(RAMEND) ; Low Byte of End SRAM Address

OUT SPL, R16 ;Write byte to SPL

LDI R16, HIGH(RAMEND) ;High Byte of End SRAM Address

OUT SPH, R16 ;Write byte to SPH

11

Stack

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

000A

000B

000C

000D

ORG 0

LDI R16,HIGH(RAMEND)

OUT SPH,R16

LDI R16,LOW(RAMEND)

OUT SPL,R16

LDI R20,0x10

LDI R21, 0x20

LDI R22,0x30

PUSH R20

PUSH R21

PUSH R22

POP R21

POP R0

POP R20

L1: RJMP L1

Address Code

SP

Memory

R20:

R21:

$00$10

$00$20

$00

$00

$30R22:

R0:

$10

$20

$30

0000

12

Special Function Registers

▪ I/O Ports

13

Pre-compiler Directives
▪ Pre-compiler directives are special instructions that are

executed before the code is compiled and directs the

compiler. These instructions are denoted by the

preceding dot, i.e. .EQU.

▪ The directives are not translated directly into opcodes.

Instead, they are used to adjust the location of the

program in memory, define macros, initialize memory,

and so on.

14

Pre-compiler Directives

15

Pre-compiler Directives: BYTE

▪ Reserve bytes to a variable

▪ The BYTE directive reserves memory resources in the

SRAM.

▪ In order to be able to refer to the reserved location, the

BYTE directive should be preceded by a label.

▪ The directive takes one parameter, which is the number

of bytes to reserve.

▪ The directive can only be used within a Data Segment

(see directives CSEG, DSEG and ESEG).

▪ Note that a parameter must be given. The allocated

bytes are not initialized.

16

Pre-compiler Directives: BYTE

17

Pre-compiler Directives: CSEG

▪ Code Segment

▪ The CSEG directive defines the start of a Code

Segment. An assembler file can contain multiple Code

Segments, which are concatenated into one Code

Segment when assembled. The directive does not take

any parameters.

18

Pre-compiler Directives: DB

▪ Define constant byte(s)

▪ The DB directive reserves memory resources in the

program memory or the EEPROM memory. In order to

be able to refer to the reserved locations, a label should

precede the DB directive.

▪ The DB directive takes a list of expressions, and must

contain at least one expression. The list of expressions

is a sequence of expressions, delimited by commas.

Each expression must evaluate to a number between –

128 and 255 since each expression is represented by 8-

bits. A negative number will be represented by the 8-bits

two’s complement of the number.

19

Pre-compiler Directives: DB

20

Pre-compiler Directives: DEF

▪ Set a symbolic name on a register

▪ The DEF directive allows the registers to be referred to

through symbols. A defined symbol can be used to the

rest of the program to refer to the registers it is assigned

to. A register can have several symbolic names attached

to it. A symbol can be redefined later in the program.

21

Pre-compiler Directives: DSEG

▪ Data Segment

▪ The DSEG directive defines the start of a Data Segment.

An Assembler file can consist of several Data Segments,

which are concatenated into one Data Segment when

assembled.

▪ A Data Segment will normally only consist of BYTE

directives (and labels). The Data Segments have their

own location counter which is a byte counter. The ORG

directive (see description later in this document) can be

used to place the variables at specific locations in the

SRAM. The directive does not take any parameters.

22

Pre-compiler Directives: DSEG

23

Pre-compiler Directives: EQU

▪ Set a symbol equal to an expression

▪ The EQU directive assigns a value to a label. This label

can then be used in later expressions. A label assigned

to a value by the EQU directive is a constant and can not

be changed or redefined.

24

Pre-compiler Directives: INCLUDE

▪ The INCLUDE directive tells the Assembler to start

reading from a specified file. The Assembler then

assembles the specified file until end of file (EOF) or an

EXIT directive is encountered. An included file may itself

contain INCLUDE directives.

25

Pre-compiler Directives: ORG

▪ Set program origin

▪ The ORG directive sets the location counter to an

absolute value. The value to set is given as a parameter.

If an ORG directive is given within a Data Segment, then

it is the SRAM location counter which is set, if the

directive is given within a Code Segment, then it is the

Program memory counter which is set and if the directive

is given within an EEPROM Segment, then it is the

EEPROM location counter which is set.

26

Pre-compiler Directives: ORG

27

Pre-compiler Directives: SET

▪ Set a symbol equal to an expression

▪ The SET directive assigns a value to a label. This label

can then be used in later expressions. A label assigned

to a value by the SET directive can be changed later in

the program.

28

Expressions
▪ The Assembler incorporates expressions. Expressions

can consist of operands, operators and functions. All

expressions are internally 32 bits.

29

Expressions: Operands

▪ Operands
The following operands can be used:

▪ User defined labels which are given the value of the

location counter at the place they appear.

▪ User defined variables defined by the SET directive

▪ User defined constants defined by the EQU directive

▪ Integer constants: constants can be given in several

formats, including

a) Decimal (default): 10, 255

b) Hexadecimal (two notations): 0x0a, $0a, 0xff, $ff

c) Binary: 0b00001010, 0b11111111

▪ PC - the current value of the Program memory location

counter 30

Expressions: Operators

31

Expressions: Operators

32

Expressions: Operators

33

Expressions: Operators

34

Expressions: Operators

35

Expressions: Operators

36

Expressions: Functions

▪ Functions
The following functions are defined:

▪ LOW(expression) returns the low byte of an expression

▪ HIGH(expression) returns the second byte of an expression

▪ BYTE2(expression) is the same function as HIGH

▪ BYTE3(expression) returns the third byte of an expression

▪ BYTE4(expression) returns the fourth byte of an expression

▪ LWRD(expression) returns bits 0-15 of an expression

▪ HWRD(expression) returns bits 16-31 of an expression

▪ PAGE(expression) returns bits 16-21 of an expression

▪ EXP2(expression) returns 2^expression

▪ LOG2(expression) returns the integer part of log2(expression)

37

Instructions
▪ Arithmetic and logic instructions

▪ Branch instructions

▪ Data transfer instructions

38

Arithmetic and Logic Instructions

Almost all of the arithmetic and logic instructions consist of

a two arguments and can modify all of the status bits in the

SREG. All of the arithmetic and logic instructions are 8-bit

only.

▪ Addition: ADD, ADC, ADIW

▪ Subtraction: SUB, SUBI, SBC, SBCI, SBIW

▪ Logic: AND, ANDI, OR, ORI, EOR

▪ Compliments: COM, NEG

▪ Register Bit Manipulation: SBR, CBR

▪ Register Manipulation: INC, DEC, TST, CLR, SER

▪ Multiplication: MUL, MULS, MULSU

▪ Fractional Multiplication: FMUL, FMULS, FMULSU

39

Arithmetic and Logic Instructions

▪ There is a common nomenclature to the naming of the

instructions. The following table explains the

nomenclature.

40

Branch Instructions

▪ Branch Instructions are used to introduce logical

decisions and flow of control within a program. About

20% of any program consists of branches. A branch

instruction is basically an instruction that can modify the

Program Counter (PC) and redirect where the next

instruction is fetched. There are two types of branch

instructions, unconditional branches and conditional

branches.

41

Branch Instructions

▪ Unconditional branches
Unconditional branches modify the PC directly. These

instructions are known as jumps because they cause the

program to “jump” to another location in program memory.

There are several types of jump instructions (RJMP, IJMP,

EIJMP, JMP), but the most common one is the relative

jump, RJMP, because it takes the least amount of cycles to

perform.

42

Branch Instructions

▪ Unconditional branches
There are also special unconditional branch instructions

known as function calls, or calls (RCALL, ICALL, EICALL,

CALL). The function calls work just like the jump

instructions, except they also push the next address of the

PC on to the stack before making the jump. There is also a

corresponding return instruction, RET, that pops the

address from the stack and loads it into the PC. These

instructions are used to create functions in AVR assembly.

43

Branch Instructions

▪ Conditional branches
Conditional branches will only modify the PC if the

corresponding condition is met. In AVR, the condition is

determined by looking at the Status Register (SREG) bits.

For example, the Branch Not Equal, BRNE, instruction will

look at the Zero Flag (Z) of the SREG. If Z = 0, then the

branch is taken, else the branch is not taken. At first this

might not seem very intuitive, but in AVR, all the

comparisons take place before the branch.

44

Branch Instructions

▪ Conditional branches
There are several things that can modify the SREG bits.

Most arithmetic and logic instructions can modify all of the

SREG bits. But what are more commonly used is the

compare instructions, (CP, CPC, CPI, CPSE). The

compare instructions will subtract the two corresponding

registers in order to modify the SREG. The result of this

subtraction is not stored back to the first argument.

With this in mind, take a look at BRNE again. If the values

in two register are equal when they are subtracted, then the

resulting value would be zero and then Z = 1. If they were

not equal then Z would be 0. Now when BRNE is called,

the Z bit can determine the condition.

45

Branch Instructions

▪ Conditional branches

46

Branch Instructions

▪ Conditional branches

Instruction Abbreviation of Comment

BREQ lbl Branch if Equal Jump to location lbl if Z = 1,

BRNE lbl Branch if Not Equal Jump if Z = 0, to location lbl

BRCS lbl

BRLO lbl

Branch if Carry Set

Branch if Lower

Jump to location lbl, if C = 1

BRCC lbl

BRSH lbl

Branch if Carry Cleared

Branch if Same or Higher

Jump to location lbl, if C = 0

BRMI lbl Branch if Minus Jump to location lbl, if N = 1

BRPL lbl Branch if Plus Jump if N = 0

BRGE lbl Branch if Greater or Equal Jump if S = 0

BRLTlbl Branch if Less Than Jump if S = 1

BRHS lbl Branch if Half Carry Set If H = 1 then jump to lbl

BRHC lbl Branch if Half Carry Cleared if H = 0 then jump to lbl

BRTS Branch if T flag Set If T = 1 then jump to lbl

BRTC Branch if T flag Cleared If T = 0 then jump to lbl

BRIS Branch if I flag set If I = 1 then jump to lbl

BRIC Branch if I flag cleared If I = 0 then jump to lbl 47

Branch Instructions

▪ SREG Definition

48

Data Transfer Instructions

▪ Immediate addressing
Immediate addressing is simply a way to move a constant

value into a register. Only one instruction supports

immediate addressing, LDI. Also note that this instruction

will only work on the upper 16 General Purpose Registers,

R16 – R31. The following is an example of when LDI would

be used.

49

Data Transfer Instructions

Suppose there was a loop that needed to be looped 16

times. Well, a counter register could be loaded with the

value 16 and then decremented after each loop. When the

register reached zero, then the program will exit from the

loop. Since the value 16 is a constant, we can load into the

counter register by immediate addressing. The following

code demonstrates this example.

50

Data Transfer Instructions

▪ Direct addressing
Direct addressing is the simplest way of moving data from

one area of memory to another. Direct addressing requires

only the address to access the data. But it is limited to the

use of the register file. For example, if you wanted to move

a byte of data from one area in Data Memory to another

area in Data Memory, you must first Load the data a

register and then Store the data into the other area of

memory. In general, every data manipulation instruction,

except LDI, comes in a Load and Store pair. For Direct

Addressing modes, the instruction pairs are LDS/STS and

IN/OUT.

51

Data Transfer Instructions
The point of having multiple instruction pairs is to access

different areas of memory.

• LDS/STS – Move data in and out of the entire range of the

SRAM Data Memory

• IN/OUT – Move data in and out of the IO Memory or $0020 -

$005F of the SRAM Data Memory. IN/OUT takes less instruction

cycles than LDS/STS does.

52

Bit and Bit-test Instructions

▪ Shift and Rotate
The AVR Instruction set specifies register shifts as two

types of instructions, shifts and rotates. Shifting will just

shift the last bit out to carry bit and shift in a 0 to the first bit.

Rotating will shift out the last bit to the carry bit and shift in

the carry bit to the first bit. Therefore rotating a register will

not loose any bit data while shifting a register will loose the

last bit. The instruction mnemonics are LSL, LSR, ROL,

and ROR for Logical Shift Left, Logical Shift Right, Rotate

Left Through Carry, and Rotate Right Through Carry

respectively.

53

Bit and Bit-test Instructions

▪ Bit Manipulation
Bit Manipulation Instructions allow the programmer to

manipulate individual bits within a register by setting, or

making the value 1, and clearing, or making the value 0,

the individual bits. There are three instruction pairs to

manipulate the SREG, an I/O Register, or a General

Purpose Register through the T flag in the SREG. BSET

and BCLR will set and clear respectively any bit within the

SREG register. SBI and CBI will set and clear any bit in

any I/O register. BST will store any bit in any General

Purpose Register to the T flag in the SREG and BLD will

load the value of the T flag in the SREG to any bit in any

General Purpose Register.

54

Bit and Bit-test Instructions

▪ SREG Manipulation
Although the instructions SBI and CBI will allow a programmer to

set and clear any bit in the SREG, there are additional

instructions that will set and clear specific bits within the SREG.

This is useful for when the programmer does not want to keep

track of which bit in the SREG is for what. The following table

shows the mnemonics for each set and clear instruction pair are

in the table below.

55

Addressing Modes

▪ Register Direct(Single Register)
The operand is contained in register d (Rd).

▪ INC R0, DEC R5, LSL R9

56

Addressing Modes

▪ Register Direct(Two Registers)
Operands are contained in register r (Rr) and d (Rd). The

result is stored in register d (Rd).

▪ ADD R1,R3

▪ SUB R5,R7

57

Addressing Modes

▪ Immediate Mode
Operates on register and immediate, stores value in

register.

▪ SUBI R16,8

▪ ADIW R16,5

▪ LDI R16,3

58

Addressing Modes

▪ Data Direct
A 16-bit Data Address is contained in the 16 LSBs of a two-

word instruction. Rd/Rr specify the destination or source

register.

▪ STS K,Rs

▪ LDS Rd, K

59

Addressing Modes

▪ Data Indirect
Operand address is the contents of the X-, Y-, or the Z-

register.

▪ LD Rd,X

▪ LD Rd,X+ ; indirect with post increment

▪ ST –Y,Rs ; indirect with pre-decrement

60

Addressing Modes

▪ I/O Direct
Operand address is contained in six bits of the instruction

word. n is the destination or source register address.

▪ IN R10,PINB

▪ OUT PORTB,R1

61

Addressing Modes

▪ I/O Ports using Indirect

62

Addressing Modes

▪ Direct Program Addressing, JMP, and

CALL
Program execution continues at the address immediate in

the instruction word.

63

Addressing Modes

▪ Indirect Program Addressing, IJMP, and

ICALL
Program execution continues at address contained by the Z-

register (i.e., the PC is loaded with the contents of the Z-

register).

64

Addressing Modes

▪ Relative Program Addressing, RJMP, and

RCALL
Program execution continues at address PC + k + 1. The

relative address k is from -2048 to 2047.

65

Flow of Control

▪ IF Statement

if (n >= 3){

variable++;

n = variable;

}

66

Flow of Control

▪ IF Statement

.def n = r16

.def variable = r1

.equ cmp = 3

cpi n, cmp ; Compare value

IF: brsh EXEC ; If n >= 3 then branch to EXEC

rjmp NEXT ; Jump to NEXT if n >= 3 is false

EXEC: inc variable ; increment variable

mov n, variable ; Set n = variable

NEXT: ; continue on with code

67

Flow of Control

▪ IF Statement

.def n = r16

.def variable = r1

.equ cmp = 3

cpi n, cmp ; Compare value

IF: brlo NEXT ; If n >= 3 is false then skip code

inc variable ; increment variable

mov n, variable ; Set n = variable

NEXT: ; Continue on with code

68

Flow of Control

▪ IF-ELSE Statement

if (n == 5) {

expr++;

}

else {

n = expr;

}

69

Flow of Control

▪ IF-ELSE Statement
.def n = r16

.def variable = r1

.equ cmp = 5

cpi n, cmp ; Compare value

breq IF ; Branch to IF if n == 3

rjmp ELSE ; Branch to ELSE if n == 3 is false

IF: inc variable ; Increment variable

rjmp NEXT ; Goto NEXT

ELSE: mov n, variable ; Set n = variable

NEXT: ; Continue

70

Flow of Control

▪ IF-ELSE Statement
.def n = r16

.def variable = r1

.equ cmp = 5

cpi n, cmp ; Compare value

IF: brne ELSE ; Goto ELSE since n == 3 is false

inc variable ; Execute the IF statement

rjmp NEXT ; Continue on with code

ELSE: mov n, variable ; Execute the ELSE statement

NEXT: ; Continue on with code

71

Flow of Control

▪ WHILE Statement

n = 0;

while (n < 10) {

sum += n;

n++;

}

72

Flow of Control

▪ WHILE Statement
.def n = r16

.def sum = r3

.equ limit = 10

ldi n, 0 ; n=0

WHIL: cpi n, limit ; Compare n with limit

brlo WHEX ; When n < limit, goto WHEX

rjmp NEXT ; Condition is not met, continue with program

WHEX: add sum, n ; sum += n

inc n ; n++

rjmp WHIL ; Go back to beginning of WHILE loop

NEXT: ; Continue on with code

73

Flow of Control

▪ WHILE Statement
.def n = r16

.def sum = r3

.equ limit = 10

ldi n,0 ; n=0

WHIL: cpi n, limit ; Compare n with limit

brsh NEXT ; When not n < limit, goto NEXT

add sum, n ; sum += n

inc n ; n++

rjmp WHIL ; Go back to beginning of WHILE loop

NEXT: nop ; Continue on with code

74

Flow of Control

▪ DO Statement

n=0;

do {

sum += n;

n++;

} while(n < 10);

75

Flow of Control

▪ DO Statement

.def n = r16

.def sum = r3

.equ limit = 10

ldi n,0 ; n=0

DO: add sum, n ; sum += n

inc n ; n++

cpi n, limit ; compare n to limit

brlo DO ; if n < 10, goto DO

NEXT: nop

76

Flow of Control

▪ FOR Statement

for (expr1; expr2; expr3) {

statement

}

expr1;

while (expr2) {

statement

expr3;

}

77

Flow of Control

▪ FOR Statement

for (n=0; n<10; n++) {

sum += n;

}

n=0;

while (n<10) {

sum += n;

n++;

}

78

Flow of Control

▪ FOR Statement
.def n = r16

.def sum = r3

.equ max = 10

ldi n, 0 ; Initialize n to 0

FOR: cpi n, max ; Compare n to max value

brlo EXEC ; If n < max, the goto EXEC

rjmp NEXT ; If n < max is false, break out of FOR loop

EXEC: add sum, n ; sum += n

inc n ; n++

rjmp FOR ; goto the start of FOR loop

NEXT:

79

Flow of Control

▪ FOR Statement
.def n = r16

.def sum = r3

.equ max = 10

ldi n, max ; Initialize n to max

FOR: add sum, n ; sum += n

dec n ; decrement n

brne FOR ; repeat loop if n is not equal to 0

NEXT:

80

Flow of Control

▪ SWITCH Statement
switch (val) {

case 1:

a_cnt++;

break;

case 2:

case 3:

b_cnt++

break;

default:

c_cnt++;

}
81

Flow of Control
.def val = r16

.def a_cnt = r5

.def b_cnt = r6

.def c_cnt = r7

ldi val, 3 : initialize val with an arbitrary number;

SWITCH: ; The beginning of the SWITCH statement

cpi val, 1 ; Compare val to 1

breq S_1 ; Branch to S_1 if val == 1

cpi val, 2 ; Compare val to 2

breq S_3 ; Branch to S_3 if val == 2

cpi val, 3 ; Compare val to 3

breq S_3 ; Branch to S_3 if val == 3

inc c_cnt ; Execute Default

rjmp NEXT ; Break out of switch

S_1: inc a_cnt ; Execute case 1

rjmp NEXT ; Break out of switch

S_3: inc b_cnt ; Execute case 2

NEXT: nop 82

Functions and Subroutines

A subroutine or function is called via the CALL, RCALL,

ICALL, or EICALL instructions and is matched with an RET

instruction to return to the instruction address after the call.

The function or subroutine is preceded by a label that

signifies the name of function or subroutine. When a CALL

instruction is implement, the processor first pushes the

address of the next instruction after the CALL instruction

onto the stack. This is important to realize since it means

that the stack must be initialized before functions or

subroutines can be used.

83

Functions and Subroutines

The CALL instruction will then jump to the address

specified by label used as the parameter. The next

instruction to be executed will then be the first instruction

with the subroutine or function. Upon exiting the subroutine

or function, the return instruction, RET, must be called. The

RET instruction will then pop the address of the next

instruction after the CALL instruction from the stack and

load into the PC. Thus the next instruction to be executed

is the instruction after the CALL instruction.

84

Functions and Subroutines

It is important to keep track of what is pushed and popped

on the stack. If within a subroutine or function, data is not

popped correctly, the RET instruction can pop the wrong

data values for the address and thus the program will not

function correctly. Additionally, never exit a subroutine or

function via another jump instruction other than RET. Doing

so will cause the data in the stack to never be popped and

thus the stack will become out of sink.

85

Functions and Subroutines
.include "m128def.inc"

.def ones_digit = r16

.def tens_digit = r17

.def temp = r18

INIT: ldi r16, high(RAMEND) ; Initialize the stack pointer high byte

out SPH, r16

ldi r16, low(RAMEND) ; Initialize the stack pointer low byte

out SPL, r16

ldi ones_digit,34

rcall DIGITS

DONE: rjmp DONE

86

Functions and Subroutines
DIGITS:

push temp

ldi tens_digit,0

ldi temp,10

REPEAT: sub ones_digit, temp

brmi MINUS

inc tens_digit

rjmp REPEAT

MINUS: add ones_digit,temp

pop temp

ret

87

Functions and Subroutines

88

