AVR Assembly Language
Programming

Assembler Source

= The Assembler works on source files containing
Instruction mnemonics, labels and directives. The
Instruction mnemonics and the directives often take

operands.

= Every input line can be preceded by a label, which is an
alphanumeric string terminated by a colon. Labels are
used as targets for jump and branch instructions and as
variable names in Program memory and RAM.

= An input line may take one of the four following forms:
1. [label:] directive [operands] [Comment]
2. [label:] instruction [operands] [Comment]
3. Comment
4. Empty line

Assembler Source

= A comment has the following form:
, [Text]
= |tems placed in braces are optional. The text between

the comment-delimiter (;) and the end of line (EOL) is
ignored by the Assembler.

= Examples:
label: .EQU varl=100 ; Set varl to 100 (Directive)
.EQU wvar2=200 ; Set wvar2 to 200
test: 1rjmp test ; Infinite loop (Instruction)
; Pure comment line

; Another comment line

General Purpose Registers

= Lower Registers

The lower 16 registers, RO — R15, work just the rest of the registers with the exception of
loading immediate data. These registers have access to the full range of the Data
Memory, ALU, and additional peripherals. Here 1s an example of using the loading
immediate data into the lower registers:

LDT Rl1e, 30 ; Load the number 30 into R16

MOV RO, R16 ; Copy R16 into RO, RO <- R16

INC RO ; Increment RO, RO <- RO+1

ADD RO, R16 ; RO <— RO + R16, wvalue in RO should now be 61

General Purpose Registers

= Upper Registers

The upper 16 registers, R16 — R31, have additional capabilities. They have access to
immediate data using the LDI instruction. These registers will be the ones that get the
most use throughout your program. To move data into or out of these registers, the
various different Load and Store instructions are needed. All arithmetic instructions
work on these registers. Here 1s an example of using the upper registers:

LDI R16, SA4 ; Load the immediate hex wvalue into R16

LD R17, X ; Load value from memory address in X-Pointer
ADC R16, R17 ; Add with carry, R16 <- Rl16 + R17 + Carry Bit
ST Y, RI16 ; Store value in R16 to address in Y-Pointer

General Purpose Registers

= X-,Y-,Z-Reqisters

The last six of the General Purpose Registers have additional functionality. They serve
as the pointers for indirect addressing. The ATmegal28 has a 16-bit addressing scheme
that requires two registers for the address alone. The AVR RISC structure supports this
scheme with the X, Y, and Z-Registers. These registers are the last six General Purpose
Registers (R26-R31). The following table details the register assignments:

Table 1: Address Register Assignments

Name Byte | Assignment
X-Register Eig; Egg
Y-Register ;ig;; Egg
Z-Register ;ig; Ez?

General Purpose Registers

= X-,Y-,Z-Reqisters

The following code 1s an example of how to use these special registers. The code will
read a value from SRAM, manipulate it, and then store it back at the next address in
SRAM.

LDT R26, S5A ; Load Ox5A into the low Byte of X
LDT R27, $S02 ; Load 0x02Z2 into the high Byte of X
LD Rle, X+ ; Load value from SRAM, increment X
INC R16 ; Manipulate value

ST X, R16 ; Store wvalue to SRAM

Special Function Registers

= Status Register(SREG)

The Status Register or SREG contains the important
Information about the ALU such as the Carry Bit, Overflow
Bit, and Zero Bit. These bits are set and cleared during
ALU instructions. This register becomes extremely useful
during branching operations. The following table details the
bit assignments within the SREG.

Bit | Name Description
7 I Global Interrupt Enable
6 T Bit Copy Storage
5 H Half Carry Flag
4 S Sign Bit
3 \Y% Twos Compliment Overflow Flag
2 N Negative Flag
1 / Zero Flag
0 C Carry Flag 8

Special Function Registers

= Stack Pointer

The Stack is mainly used for storing temporary data, for
storing local variables and for storing return addresses after
interrupts and subroutine calls. The Stack Pointer Register
always points to the top of the Stack. Note that the Stack is
Implemented as growing from higher memory locations to
lower memory locations. This implies that a Stack PUSH
command decreases the Stack Pointer.

Special Function Registers

= Stack Pointer

The AVR Stack Pointer is implemented as two 8-bit Special
Function Registers, Stack Pointer High Register (SPH) and
Stack Pointer Low Register (SPL). The following diagram is
a representation of the Stack Pointer.

Bit 15 14 13 12 11 10 9 8
SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
SP7 SP6 SPS SP4 SP3 SP2 SP1 SPO SPL

7 6 5 4 3 2 1 0

10

Special Function Registers

= Stack Pointer

The following example demonstrates how to initialize the
Stack Pointer. Remember to include the definition file for
the ATmegal28 at the beginning of the program to utilize
Register naming schemes.

include “m128def.inc” ; Include definition file in program

LDI R16, LOW(RAMEND) ; Low Byte of End SRAM Address
ouT SPL, R16 ;Write byte to SPL
LDI R16, HHGH(RAMEND) ;High Byte of End SRAM Address
OuT SPH, R16 ;Write byte to SPH

11

Stack

Address Code

ORG
LDI R1l6,HIGH (RAMEND)
OUT SPH,R16
Rzo: $10 R22: $30 LDI R16,LOW(RAMEND)
R21: | $20 RO: | $00 OUT SPL,R16
LDI R20,0x10
LDI R21, 0x20
LDI R22,0x30
SP 0000 PUSH [$10]

PUSH [$20]
PUSH [$30)

POP R21

POP RO

POP R20

Ll: RJMP L1

Memory

Special Function Registers

= |/O Ports

PUD
DDxn | PORTxn | (in SFIOR) I/0 Pull-up | Comment
0 0 X Input No Tri-state (H1-7)
Pxn will source current 1if ext.
0 1 0 Input Yes pulled low.
0 1 1 Input No Tri-state (H1-7)
1 0 X Output No Output Low (Sink)
1 1 X Output No Output High (Source)
LDI R16, SFF Select Direction as Output on all pins
ouT DDRB, R16 Set value in DDRB
LDI R16, SFF Set Initial value to high on all pins
OouT PORTB, R16 Set PORTB value, Port B pins should be high
LDI R16, $00 Select Direction as Input on all pins
ouT DDRD, R16 Set value in DDRD
LDI Rle, $00 Use normal Tri-state with no Pull-up resister
OouT PORTD, R16 Port D is now ready as input

13

Pre-compiler Directives

= Pre-compiler directives are special instructions that are
executed before the code is compiled and directs the
compiler. These instructions are denoted by the
preceding dot, i.e. .EQU.

= The directives are not translated directly into opcodes.
Instead, they are used to adjust the location of the
program in memory, define macros, initialize memory,
and so on.

14

Pre-compiler Directives

Directive | Description
.BYTE Reserve byte to a variable
.CSEG Code Segment
.DB Detine constant byte(s)
.DEF Define a symbolic name on a register
.DEVICE | Define which device to assemble for
.DSEG Data Segment
.DW Define constant words
. ENDMACRO | End macro
.EQU Set a symbol equal to an expression
.ESEG EEPROM segment
LEXIT Exit from a file
. INCLUDE | Read source from another file
.LIST Turn listfile generation on
.LISTMAC | Turn macro expression on
.MACRO Begin Macro
.NOLIST | Turn listfile generation off
.ORG Set program origin
LSET

Set a sym’bol to an expression

15

Pre-compiler Directives: BYTE

Reserve bytes to a variable

The BYTE directive reserves memory resources in the
SRAM.

In order to be able to refer to the reserved location, the
BYTE directive should be preceded by a label.

The directive takes one parameter, which is the number
of bytes to reserve.

The directive can only be used within a Data Segment
(see directives CSEG, DSEG and ESEQG).

Note that a parameter must be given. The allocated
bytes are not initialized.

16

Pre-compiler Directives: BYTE

Syntax:

Example:
.DSEG

.CSEG

LABEL:

varl:

table:

1di
1di
1d

.BYTE eXpression

.BYTE 1 ; reserve 1 byte to wvarl
.BYTE tab size ; reserve tab size bytes
r30,low(varl) ; Load Z register low
r31,high(varl) ; Load Z register high

rl,Z ; Load VAR1 into register 1

17

Pre-compiler Directives: CSEG

Code Segment

The CSEG directive defines the start of a Code
Segment. An assembler file can contain multiple Code
Segments, which are concatenated into one Code
Segment when assembled. The directive does not take
any parameters.

Syntax:
.CSEG
Example:
.DSEG ; Start Data Segment
vartab: .BYTE 4 ; Reserve 4 bytes in SRAM
.CSEG
const: .DW 2 ; Write 0x000Z2 in program memory
mov rl, ro0 ; Do something

18

Pre-compiler Directives: DB

= Define constant byte(s)

= The DB directive reserves memory resources in the
program memory or the EEPROM memory. In order to
be able to refer to the reserved locations, a label should
precede the DB directive.

= The DB directive takes a list of expressions, and must
contain at least one expression. The list of expressions
IS a sequence of expressions, delimited by commas.
Each expression must evaluate to a number between —
128 and 255 since each expression is represented by 8-
bits. A negative number will be represented by the 8-bits
two’s complement of the number.

19

Pre-compiler Directives: DB

Syntax:

Example:
.CSEG

consts:

text:

.DB

.DB

LABEL: .DB expressionlist

0, 255, 0b01010101, -128, SAA

“"Hello World”

20

Pre-compiler Directives: DEF

= Set asymbolic name on aregister

= The DEF directive allows the registers to be referred to
through symbols. A defined symbol can be used to the
rest of the program to refer to the registers it is assigned
to. A register can have several symbolic names attached
to it. A symbol can be redefined later in the program.

Syntax:
.DEF Symbol=Register

Example:
.DEF temp=R16

.DEF ior=RO

.CSEG
ldi temp, 0OXE0 ; Load 0xf0 into temp register
in ior, O0x3E ; Read SREG into ior register

eor temp, ior ; Exclusive or temp and ior 21

Pre-compiler Directives: DSEG

= Data Segment

= The DSEG directive defines the start of a Data Segment.
An Assembler file can consist of several Data Segments,
which are concatenated into one Data Segment when
assembled.

= A Data Segment will normally only consist of BYTE
directives (and labels). The Data Segments have their
own location counter which is a byte counter. The ORG
directive (see description later in this document) can be
used to place the variables at specific locations in the
SRAM. The directive does not take any parameters.

22

Pre-compiler Directives: DSEG

Syntax:
.DSEG

Example:
.DSEG

.CSEG

varl:

table

1di
1di
1d

.BYTE 1
: .BYTE tab size

r30,low(varl)
r31,high(varl)
rl,Z

Start data segment
reserve 1 byte to wvarl

reserve tab size bytes.
Load Z register low

Load Z register high

Load varl into register 1

23

Pre-compiler Directives: EQU

= Set asymbol equal to an expression

= The EQU directive assigns a value to a label. This label
can then be used In later expressions. A label assigned
to a value by the EQU directive is a constant and can not
be changed or redefined.

Syntax:
.EQU label = expression

Example:
.EQU io offset = 0x23

.EQU porta = io offset + 2

.CSEG ; Start code segment
clr r2 ; Clear register 2
out porta, r2 : Write to Port A

24

Pre-compiler Directives: INCLUDE

= The INCLUDE directive tells the Assembler to start
reading from a specified file. The Assembler then
assembles the specified file until end of file (EOF) or an
EXIT directive is encountered. An included file may itself
contain INCLUDE directives.

Syntax:
.INCLUDE “filename”

Example:
; lodefs.asm:
. EQU sreg=0x3f ; Status register
.EQU sphigh=0x3e ; Stack pointer high
.EQU splow=0x3d ; Stack pointer low
; lncdemo.asm
.INCLUDE "“iodefs.asm” : Include I/O definitions

in r0, sreg ; Read status register

25

Pre-compiler Directives: ORG

= Set program origin

= The ORG directive sets the location counter to an
absolute value. The value to set is given as a parameter.
If an ORG directive is given within a Data Segment, then
it is the SRAM location counter which is set, if the
directive is given within a Code Segment, then it is the
Program memory counter which is set and if the directive
IS given within an EEPROM Segment, then it is the
EEPROM location counter which is set.

20

Pre-compiler Directives: ORG

Syntax:

.ORG expression

Example:

.DSEG
.ORG 0x67
variable: .BYTE 1

.ESEG
.ORG 0x20

eevar: .DW Oxfeff
.CSEG
.ORG 0x10

mov ro,rl

Start data segment
Set SRAM address to hex 67

Reserve a byte at SRAM
adr.67H

Start EEPROM Segment

Set EEPROM location
counter

Initialize one word

Set Program Counter to hex
10

Do something

217

Pre-compiler Directives: SET

= Set asymbol equal to an expression

= The SET directive assigns a value to a label. This label
can then be used in later expressions. A label assigned
to a value by the SET directive can be changed later In

the program.

Syntax:
.SET label = expression

Example:
.SET io offset = 0x23

.SET porta = io offset + 2

.CSEG ; Start code segment
clr r2 ; Clear register 2
out porta, r2 ; Write to Port A

28

Expressions

= The Assembler incorporates expressions. Expressions
can consist of operands, operators and functions. All
expressions are internally 32 bits.

29

Expressions: Operan ds

= Operands
The following operands can be used:

User defined labels which are given the value of the
location counter at the place they appear.

User defined variables defined by the SET directive
User defined constants defined by the EQU directive

Integer constants: constants can be given in several
formats, including

a) Decimal (default): 10, 255
b) Hexadecimal (two notations): 0x0a, $0a, Oxff, $ff
c) Binary: Ob00001010, Ob11111111

PC - the current value of the Program memory location
counter 30

Expressions: Operato I'S

Logical Not

Bitwise Not

Unary Minus

Multiplication

Symbol:

Description:

Precedence:

Example:
Symbol:

Description:

Precedence:

Example:

Symbol:

Description:

Precedence:

Example:
Symbol:

Description:

Precedence:

Example:

Unary operator which returns 1 if the expression was zero, and returns 0
if the expression was nonzero

14

1di rle6, !0xfo ; Load r1é with 0x00

Unary operator which returns the input expression with all bits inverted
14

1di rl6e,~0xf0 ; Load rlé with 0x0f

Unary operator which returns the arithmetic negation of an expression
14

lai rlé, -2 ; Load -2(0xfe) in rlé6

*

Binary operator which returns the product of two expressions
13

1di r30,label*2 ; Load r30 with label*2

31

Expressions: Operato I'S

Division

Addition

Subtraction

Shift left

Symbol:

Description:

Precedence:

Example:
Symbol:

Description:

Precedence:

Example:

Symbol:
Description:

Precedence:

Example:
Symbol:

Description:

Precedence:

Example:

/

Binary operator which returns the integer quotient of the left expression
divided by the right expression

13

1di r30,label/2 ; Load r30 with label/2
+

Binary operator which returns the sum of two expressions
12

1di r30,cl+c?2 ; Load r30 with cl+c2

Binary operator which returns the left expression minus the right
expression

12

1di r1l7,cl-c2 ;Load rl17 with cl-c2

<<

Binary operator which returns the left expression shifted left a number of
times given by the right expression

11
1di rl7,l<<bitmask ;Load rl7 with 1 shifted

;left bitmask times 5322

Expressions: Operato I'S

Shift right

Less than

Less or Equal

Symbol:

Description:

Precedence:

Example:

Symbol:

Description:

Precedence:

Example:

Symbol:

Description:

Precedence:

Example:

>>

Binary operator which returns the left expression shifted right a number of
times given by the right expression.

11

1di rl7,cl>>c2 ;Load rl1l7 with ¢l shifted
;right c2 times

<

Binary operator which returns 1 if the signed expression to the left is Less
than the signed expression to the right, O otherwise

10

ori rl8,bitmask* (cl<c2) +1 ;Or rl8 with
;jan expression

<=

Binary operator which returns 1 if the signed expression to the left is Less
than or Equal to the signed expression to the right, 0 otherwise

10
ori r18,bitmask* (cl<=c2) +1 ;O0r rl8 with

;an expression

33

Expressions: Operato I'S

Greater than

Greater or Equal

Equal

Symbol:

Description:

Precedence:

Example:

Symbol:

Description:

Precedence:

Example:

Symbol:

Description:

Precedence:

Example:

>

Binary operator which returns 1 if the signed expression to the left is
Greater than the signed expression to the right, 0 otherwise

10

ori rl8,bitmask* (cl>c2) +1 ;Or rls8 with
;jan expression

S=

Binary operator which returns 1 if the signed expression to the left is
Greater than or Equal to the signed expression to the right, 0 otherwise

10
ori rl8,bitmask* (cl>=c2)+1 ;Or rl8 with

;an expression

Binary operator which returns 1 if the signed expression to the left is
Equal to the signed expression to the right, O otherwise

9
andi rl19,bitmask*(cl==c2)+1 ;And r19 with

;an expression

34

Expressions: Operato I'S

Not Equal

Bitwise And

Bitwise Xor

Symbol:

Description:

Precedence:
Example:
Symbol:
Description:
Precedence:
Example:
Symbol:

Description:

Precedence:

Example:

Binary operator which returns 1 if the signed expression to the left is Not
Equal to the signed expression to the right, 0 otherwise

9

.SET flag=(cl!=c2) ;S8et flag to 1 or O

&

Binary operator which returns the bitwise And between two expressions
8

1di rl18,High(cl&c2) ;jLoad rl1l8 with an expression

M

Binary operator which returns the bitwise Exclusive Or between two
expressions

<

1di r18,Low(cl”c2) ;jLoad rl1l8 with an expression

35

Expressions: Operato I'S

Bitwise Or

Logical And

Logical Or

Symbol:
Description:
Precedence:
Example:
Symbol:

Description:

Precedence:
Example:
Symbol:

Description:

Precedence:

Example:

Binary operator which returns the bitwise Or between two expressions
6

14i rlS,Low(c1|c2} ;Load rl8 with an expression
&&

Binary operator which returns 1 if the expressions are both nonzero, 0
otherwise

5
14i r1l8,Low(cl&&c2) ;Load rl8 with an expression

Binary operator which returns 1 if one or both of the expressions are
nonzero, 0 otherwise

4

1di r18,Low(cl||c2) ;Load rl8 with an expression

36

Expressions: FUN ctions

= Functions
The following functions are defined:

LOW(expression) returns the low byte of an expression
HIGH(expression) returns the second byte of an expression
BYTEZ2(expression) is the same function as HIGH
BYTE3(expression) returns the third byte of an expression
BYTE4(expression) returns the fourth byte of an expression
LWRD(expression) returns bits 0-15 of an expression
HWRD(expression) returns bits 16-31 of an expression
PAGE(expression) returns bits 16-21 of an expression
EXP2(expression) returns 2”expression

LOG2(expression) returns the integer part of log2(expression)

37

Instructions

= Arithmetic and logic instructions
= Branch instructions
= Data transfer instructions

CMD ARG1, ARG2

Instruction Name Argument] Argument?

ARG1 € CMD(ARG1, ARG2)

Result of operation

38

Arithmetic and Logic Instructions

Almost all of the arithmetic and logic instructions consist of
a two arguments and can modify all of the status bits in the
SREG. All of the arithmetic and logic instructions are 8-bit
only.

= Addition: ADD, ADC, ADIW

= Subtraction: SUB, SUBI, SBC, SBCI, SBIW

= Logic: AND, ANDI, OR, ORI, EOR

= Compliments: COM, NEG

= Register Bit Manipulation: SBR, CBR

= Register Manipulation: INC, DEC, TST, CLR, SER
= Multiplication: MUL, MULS, MULSU

= Fractional Multiplication: FMUL, FMULS, FMULSU

39

Arithmetic and Logic Instructions

= There is a common nomenclature to the naming of the
Instructions. The following table explains the
nomenclature.

Ending Meaning Description
Letter
C Carry Operation will involve the carry bit
I Immediate Operation involves an immediate value that i1s passed as the
second argument.
W Word The operation 1s a 16-bit operation.
S Signed The operation handles signed numbers
SU | Signed/Unsigned | The operation handles both signed and unsigned.

40

Branch Instructions

= Branch Instructions are used to introduce logical
decisions and flow of control within a program. About
20% of any program consists of branches. A branch
Instruction is basically an instruction that can modify the
Program Counter (PC) and redirect where the next
Instruction is fetched. There are two types of branch
Instructions, unconditional branches and conditional
branches.

41

Branch Instructions

= Unconditional branches

Unconditional branches modify the PC directly. These
Instructions are known as jumps because they cause the
program to “jump” to another location in program memory.
There are several types of jump instructions (RIMP, IJMP,
EIJMP, JMP), but the most common one is the relative
jump, RIMP, because it takes the least amount of cycles to

perform.

42

Branch Instructions

= Unconditional branches

There are also special unconditional branch instructions
known as function calls, or calls (RCALL, ICALL, EICALL,
CALL). The function calls work just like the jump
Instructions, except they also push the next address of the
PC on to the stack before making the jump. There is also a
corresponding return instruction, RET, that pops the
address from the stack and loads it into the PC. These
Instructions are used to create functions in AVR assembly.

43

Branch Instructions

= Conditional branches

Conditional branches will only modify the PC if the
corresponding condition is met. In AVR, the condition is
determined by looking at the Status Register (SREG) bits.
For example, the Branch Not Equal, BRNE, instruction will
look at the Zero Flag (Z) of the SREG. If Z = 0, then the
branch is taken, else the branch is not taken. At first this
might not seem very intuitive, but in AVR, all the
comparisons take place before the branch.

44

Branch Instructions

= Conditional branches

There are several things that can modify the SREG bits.
Most arithmetic and logic instructions can modify all of the
SREG bits. But what are more commonly used is the
compare instructions, (CP, CPC, CPI, CPSE). The
compare instructions will subtract the two corresponding
registers in order to modify the SREG. The result of this
subtraction is not stored back to the first argument.

With this in mind, take a look at BRNE again. If the values
In two register are equal when they are subtracted, then the
resulting value would be zero and then Z = 1. If they were
not equal then Z would be 0. Now when BRNE is called,
the Z bit can determine the condition.

45

Branch Instructions

= Conditional branches

Rd > Rr (N V)= BRLT'" Rd < Rr Z+(N@& V) =1 BRGE* Signed
Rd = Rr (NeV)=0 BRGE Rd <Rr (NeV)=1 BRLT Signed
Rd=Rr | Z=1 BREQ Rd = Rr Z=0 BRNE Signed
Rd<Rr | Z+(N@V)=1 BRGE'" Rd > Rr Zes(N®V)=0 BRLT* Signed
Rd <Rr (N V)=1 BRLT Rd = Rr (N®V)=0 BRGE Signed
Rd>Rr | C+Z=0 BRLO!" Rd <Rr C+Z=1 BRSH* Unsigned
Rd=zRr | C=0 BRSH/BRCC | Rd<Rr c=1 BRLO/BRCS Unsigned
Rd = Rr Z=1 BREQ Rd = Rr Z=0 BRNE Unsigned
Rd<Rr | C+Z=1 BRSH'" Rd > Rr C+Z=0 BRLO* Unsigned
Rd<Rr | C=1 BRLO/BRCS | Rd=Rr C=0 BRSH/BRCC Unsigned
Carry C=1 BRCS No carry C=0 BRCC Simple
Negative W N=1 BRMI Positive N=0 BRPL Simple
Overflow | V=1 BRVS No overflow V=0 BRVC Simple
Zero Z=1 BREQ Not zero Z=0 BRNE Simple

Note: 1. Interchange Rd and Rr in the operation before the test, i.e., CP Rd,Rr - CP Rr,Rd.

46

Branch Instructions

= Conditional branches

Instruction Abbreviation of Comment

BREQ /b/ Branch if Equal Jump to location /b/if Z = 1,
BRNE /b6/ Branch if Not Equal Jump if Z = 0, to location /b/
BRCS /b/ Branch if Carry Set Jump to location /b, if C=1
BRLO /b/ Branch if Lower

BRCC /b/ Branch if Carry Cleared Jump to location /b, ifC=10
BRSH /b/ Branch if Same or Higher

BRMI /b/ Branch if Minus Jump to location Ibl, if N = 1
BRPL /b/ Branch if Plus JumpifN=20

BRGE /b/ Branch if Greater or Equal JumpifS=0

BRLT/b/ Branch if Less Than Jump ifS=1

BRHS /b/ Branch if Half Carry Set If H = 1 then jump to /b/
BRHC 16/ Branch if Half Carry Cleared if H= 0 then jump to Ibl
BRTS Branch if T flag Set If T = 1 then jump to Ibl
BRTC Branch if T flag Cleared If T = 0 then jump to Ibl
BRIS Branch if I flag set If I = 1 then jump to Ibl
BRIC Branch if I flag cleared If I = 0 then jump to Ibl 47

Branch Instructions

= SREG Defin

HEH H7I/A7|

=

1ition

4%

Mo OIE{HE EAISt HIE
« 0| H|EZ} 10|12, JHEEQ! QI E 245} H|E7} 10| &|0{of QIE|RET ASSict,
RIW 0 « OIEfZE AH|A 2EI0| Al#iE|ol =02 00| €T, IRET T2 o= OIEE A
A 2E0| Z2EH X=02 10| =
- SEl Hyoz 1, CLI HHOZ S OIS 4= L},
HE SAH/XME HE
T RIW 0 .+ BST Bo2 KAL) 5t HIES T b|E0| ZALIC
. BLD HEOR T HIES H{KIAEQ| 3 HIE0| HAIC
Ht7H2|(Half Carry) HIE
H R/W 0 « OIM A0} HIE 30| HIE 42 FH2|7t LMEHH 10] =ICH
* BCD(Binary—Coded Decimal) SlAtY| SE35IC}
23S HE
W T
S R/ 0 L NBV, 24 Zaj09} 20 B4 QHEZ Z2i79) HEF OR
y o . 20| B4 QHED Zaj7
« 1A Z40L b7 b6, HIE 71} HE 62| HIEFX OR
=+ 23
N R/W 0 . oA} Zi3k MSBYF 10[4 24 =2y} 10| Hick
HZ S
W
z R/ 0 . oUAl 7T} BE HE} 00| A2 Zaja7} 10| Eic,
7H2] E2a
W
¢ R/ 0 . oUAt ZT MSBOIA] W17} wAte®! 10| Sic, 48

Data Transfer Instructions

* Immediate addressing

Immediate addressing is simply a way to move a constant
value into a register. Only one instruction supports
Immediate addressing, LDI. Also note that this instruction
will only work on the upper 16 General Purpose Registers,
R16 — R31. The following is an example of when LDI would
be used.

49

Data Transfer Instructions

Suppose there was a loop that needed to be looped 16
times. Well, a counter register could be loaded with the
value 16 and then decremented after each loop. When the
register reached zero, then the program will exit from the
loop. Since the value 16 is a constant, we can load into the
counter register by immediate addressing. The following
code demonstrates this example.

.def counter = r2Z2 ; Create a register wvariable

1di counter, 16 ; Load the immediate wvalue 16 in counter
Loop: breg Exit ; If zero, exit loop

adc ro, rl ; Do something

dec counter ; Decrement the counter

rimp Loop ; Redo the loop
Exit: inc r0 ; Continue on with program

50

Data Transfer Instructions

= Direct addressing

Direct addressing is the simplest way of moving data from
one area of memory to another. Direct addressing requires
only the address to access the data. But it is limited to the
use of the regqister file. For example, if you wanted to move
a byte of data from one area in Data Memory to another
area in Data Memory, you must first Load the data a
register and then Store the data into the other area of
memory. In general, every data manipulation instruction,
except LDI, comes in a Load and Store pair. For Direct
Addressing modes, the instruction pairs are LDS/STS and
IN/OUT.

51

Data Transfer Instructions

The point of having multiple instruction pairs is to access
different areas of memory.

« LDS/STS — Move data in and out of the entire range of the
SRAM Data Memory

* IN/OUT — Move data in and out of the IO Memory or $0020 -
$005F of the SRAM Data Memory. IN/OUT takes less instruction
cycles than LDS/STS does.

The following 1s an example loop that continually increments the data value at a
particular address.

.equ addr = 514DO0 ; Address of data to be manipulated
Loop: lds r0, addr ; Load data to RO from memory

inc r0 ; Increment RO

sts addr, ro0 ; Store data back to memory

rimp Loop ; Jump back to loop

52

Bit and Bit-test Instructions

= Shift and Rotate

The AVR Instruction set specifies register shifts as two
types of instructions, shifts and rotates. Shifting will just
shift the last bit out to carry bit and shift in a O to the first bit.
Rotating will shift out the last bit to the carry bit and shift in
the carry bit to the first bit. Therefore rotating a register will
not loose any bit data while shifting a register will loose the
last bit. The instruction mnemonics are LSL, LSR, ROL,
and ROR for Logical Shift Left, Logical Shift Right, Rotate
Left Through Carry, and Rotate Right Through Carry
respectively.

53

Bit and Bit-test Instructions

= Bit Manipulation

Bit Manipulation Instructions allow the programmer to
manipulate individual bits within a register by setting, or
making the value 1, and clearing, or making the value O,
the individual bits. There are three instruction pairs to
manipulate the SREG, an I/O Register, or a General
Purpose Register through the T flag in the SREG. BSET
and BCLR will set and clear respectively any bit within the
SREG register. SBI and CBI will set and clear any bit in
any /O reqgister. BST will store any bit in any General
Purpose Register to the T flag in the SREG and BLD will
load the value of the T flag in the SREG to any bit in any
General Purpose Register.

54

Bit and Bit-test Instructions

= SREG Manipulation

Although the instructions SBI and CBI will allow a programmer to
set and clear any bit in the SREG, there are additional
Instructions that will set and clear specific bits within the SREG.

This is useful for when the programmer does not want to keep
track of which bit in the SREG is for what. The following table

shows the mnemonics for each set and clear instruction pair are

In the table below.

Bit | Bit Name Set Bit | Clear Bit
C | Carry Bit SEC CLC
N | Negative Flag SEN CLN
Z | Zero Flag SEZ CLZ
I | Global Interrupt Flag SEI CLI
S | Signed Test Flag SES CLS
V | Two’s Complement OVF Flag SEV CLV
T | T Flag SET CLT
H | Half Carry Flag SEH CLH

55

Addressing Modes

» Register Direct(Single Register)

The operand is contained in register d (Rd).

= INC RO, DEC R5, LSL R9

15

OP

Rd

A 4

REGISTER FILE

31

56

Addressing Modes

» Register Direct(Two Registers)

Operands are contained in register r (Rr) and d (Rd). The

result is stored in register d (Rd).

= ADD R1,R3
= SUB R5,R7

15

5 4

REGISTER FILE

OP

Rr

Rd

31

57

Addressing Modes

= |[mmediate Mode

Operates on register and immediate, stores value In
register.

= SUBI R16,8
= ADIW R16,5
= | DI R16,3

58

Addressing Modes

= Data Direct

A 16-bit Data Address is contained in the 16 LSBs of a two-
word instruction. Rd/Rr specify the destination or source

register.
= STS K,Rs
= IDSRd, K 7 =

Data Space

OP

Rr/Rd

Data Address

15

0x0000

RAMEND

59

Addressing Modes

= Data Indirect
Operand address is the contents of the X-, Y-, or the Z-

register.

= LD Rd,X
= LD Rd,X+ ; indirect with post increment
= ST -Y,Rs; indirect with pre-decrement

15

0

Data Space

X,Y ORZ-REGISTER

0x0000

RAMEND 60

Addressing Modes

= |/O Direct

Operand address is contained in six bits of the instruction
word. n is the destination or source register address.

= IN R10,PINB
= OUT PORTB,R1 VOMEMORY

15 5 0
OoP Rr/Rd A

63

61

Addressing Modes

= |/O Ports using Indirect

Ports can be accessed using SRAM access
commands
> Add 0x20 to the port number
+ First 32 numbers are the registers
Example
= .DEF register = R16
- LDI ZH, HIGH(PORTB+32)
» LDI ZL, LOW(PORTB+32)
= LD register, Z
For I/O Registers located in extended 1/0:

= Commands like “In/Out” cannot be used

= Instead replaced with direct and indirect memory
instructions
- LDS and STS (Load and Store from SRAM) 62

Addressing Modes

= Direct Program Addressing, JMP, and

CALL

Program execution continues at the address immediate In
the instruction word.

31

16

OP

6 MSB

16 LSB

15

PROGRAM MEMORY

0x0000

FLASHEND

63

Addressing Modes

= |ndirect Program Addressing, IJMP, and
ICALL

Program execution continues at address contained by the Z-
register (i.e., the PC is loaded with the contents of the Z-

reqgister).

PROGRAM MEMORY

0x0000
15 0

Z - REGISTER

FLASHEND

64

Addressing Modes

* Relative Program Addressing, RIJIMP, and
RCALL

Program execution continues at address PC + k + 1. The
relative address k is from -2048 to 2047.

PROGRAM MEMORY

0x0000

PC

15 12 11 0

OP k

| FLASHEND

65

Flow of Control

= |F Statement

if (n >= 3){
variable++;
n = variable;

66

Flow of Control

= |F Statement

.def n=rl6
.def variable
equ cmp=3

cpi
IF: brsh

rmp
EXEC: inc

mov

NEXT:

=rl

n, cmp ; Compare value

EXEC ; If n >= 3 then branch to EXEC
NEXT ; Jump to NEXT if n >= 3 is false
variable ; Increment variable

n, variable ; Set n = variable

: continue on with code

6/

Flow of Control

= |F Statement

.def
.def
.equ

IF:

NEXT:

n=rl6

variable =rl

cmp =3

cpil n, cmp ; Compare value

brlo NEXT , If n >= 3 is false then skip code
InC variable : Increment variable

mov n, variable ; Set n = variable

- Continue on with code

68

Flow of Control

= |F-ELSE Statement

If (n==5) {
expr++;
}
else {
n = expr,

}

69

Flow of Control

= |F-ELSE Statement

.def
.def
.equ

|F:

ELSE:
NEXT:

n=rl6

variable =rl
cmp=>5

cpi n, cmp
breq |IF

nmp ELSE
INcC variable
nmp NEXT

mov n, variable

; Compare value

' Branch to IF if n ==

: Branch to ELSE if n == 3 Is false
; Increment variable

; Goto NEXT

; Set n = variable

; Continue

70

Flow of Control

= |F-ELSE Statement

.def
.def
.equ

|F:

ELSE:
NEXT:

n=rl6

variable =rl
cmp=>5

cpi n, cmp
brne ELSE
Inc variable
nmp NEXT

mov n, variable

; Compare value

; Goto ELSE since n == 3 is false
. EXxecute the IF statement

; Continue on with code

; Execute the ELSE statement

; Continue on with code

/1

Flow of Control

= WHILE Statement

n=0;

while (n < 10) {
sum +=n;
n++:

12

Flow of Control

= WHILE Statement

.def n=rl6

.def sum =r3
equ |limit=10

i
WHIL: cpi
brlo
rmp
WHEX: add
INcC
rmp
NEXT:

n, 0 ; n=0
n, limit ; Compare n with limit
WHEX ; When n < limit, goto WHEX
NEXT ; Condition is not met, continue with program
sum, n ;sum +=n
n ' n++
WHIL ; Go back to beginning of WHILE loop
; Continue on with code

/3

Flow of Control

= WHILE Statement

.def n=rl6

.def sum =r3
equ |limit=10

i
WHIL: cpi
brsh
add
INcC
rmp
NEXT: nop

n,o

n, limit
NEXT
sum, n
n
WHIL

' n=0

; Compare n with limit

; When not n < limit, goto NEXT
; sum +=n

' N++

; Go back to beginning of WHILE loop
: Continue on with code

/4

Flow of Control

= DO Statement

n=0;

do {
sum +=n;
n++;

} while(n < 10);

75

Flow of Control

= DO Statement

.def n=rl6
.def sum =r3
equ |limit=10

|di n,o ' n=0
DO: add sum, n ; sum+=n
INC n CN++
cpi n, limit ; compare n to limit
brlo DO ; If n < 10, goto DO
NEXT: nop

76

Flow of Control

= FOR Statement

for (exprl; expr2; expr3) {
statement

}

expri;

while (expr2) {
statement
expr3;

(&4

Flow of Control

= FOR Statement

for (n=0; Nn<10; n++) {

sum +=n;

}

n=0;

while (n<10) {
sum +=n;
N++:

}

/8

Flow of Control

= FOR Statement

.def
.def
.equ

FOR:

EXEC:

NEXT:

n=rl6

sum =r3

max = 10

[of n,0 ; Initialize nto 0

cpi n, max ; Compare n to max value

brlo EXEC ;If n <max, the goto EXEC

rimp NEXT ;If n<maxis false, break out of FOR loop
add sum, n ;sum +=n

INC n ' N++

nmp FOR ; goto the start of FOR loop

79

Flow of Control

= FOR Statement

.def n=rl6
.def sum =r3
equ max=10

| n, max : Initialize n to max
FOR: add sum, n ; sum +=n
dec n : decrement n

brne FOR ;repeat loop if nis not equal to O
NEXT:

80

Flow of Control

= SWITCH Statement

switch (val) {

case 1:
a_cnt++;
break;

case 2.

case 3.
b_cnt++
break;

default:
C_cnt++;

}

31

Flow of Control

def
def
def
def

SWITCH:

S 1:

S 3.
NEXT:

val =rl6
acnt=r5

b cnt=r6

c cnt=r7

i val, 3
cpi val, 1
breq S1
cpi val, 2
breq S 3
cpi val, 3
breq S 3
inc c_cnt
rmp NEXT
inc a_cnt
rmp NEXT
inc b_cnt

nop

- initialize val with an arbitrary number;
; The beginning of the SWITCH statement
; Compare valto 1

;Branchto S_1if val ==

; Compare val to 2

;Branchto S_3if val ==

; Compare val to 3

;Branchto S_3if val ==

: Execute Default

; Break out of switch

; Execute case 1

; Break out of switch

; EXecute case 2

82

Functions and Subroutines

A subroutine or function is called via the CALL, RCALL,
ICALL, or EICALL instructions and is matched with an RET
Instruction to return to the instruction address after the call.
The function or subroutine is preceded by a label that
signifies the name of function or subroutine. When a CALL
Instruction is implement, the processor first pushes the
address of the next instruction after the CALL instruction
onto the stack. This is important to realize since it means
that the stack must be initialized before functions or
subroutines can be used.

83

Functions and Subroutines

The CALL instruction will then jump to the address
specified by label used as the parameter. The next
Instruction to be executed will then be the first instruction
with the subroutine or function. Upon exiting the subroutine
or function, the return instruction, RET, must be called. The
RET instruction will then pop the address of the next
Instruction after the CALL instruction from the stack and
load into the PC. Thus the next instruction to be executed
IS the instruction after the CALL instruction.

34

Functions and Subroutines

It is important to keep track of what is pushed and popped
on the stack. If within a subroutine or function, data is not
popped correctly, the RET instruction can pop the wrong
data values for the address and thus the program will not
function correctly. Additionally, never exit a subroutine or
function via another jump instruction other than RET. Doing
so will cause the data in the stack to never be popped and
thus the stack will become out of sink.

85

Functions and Subroutines

.Include "m128def.inc"

.def
.def
.def

INIT:

DONE:

ones_digit =rl6
tens_digit = rl7

temp =rl8

i rl6, high(RAMEND) ; Initialize the stack pointer high byte
out SPH, rl6

[o] rl6, low(RAMEND) ; Initialize the stack pointer low byte

out SPL, r16

di ones_digit,34
rcall DIGITS
rmp DONE

86

Functions and Subroutines

DIGITS:

REPEAT:

MINUS:

push
i

i
sub
brmi
inc
rmp
add
pPop
ret

temp
tens_digit,0
temp,10
ones_digit, temp
MINUS
tens_digit
REPEAT
ones_digit,temp
temp

37

Functions and Subroutines

AYR Studio - [C:'WworkWavyrWdivideWdivide.asm]

: [Eile

A= - R e

Praoject

Build Edit

Miew Tools

=L . . VXYY

Debug

Window

Help

fp @EL L @ P SEE=EDPEO O

: |Trau:e Dizabled

T < b

atack Pointer
pointer
Y pointer
Z pointer
Cycle Counter
Frequency
stop Watch
SREG
—| Registers

RO0

RO

ROZ

RO3

R04

RO5

ROG

ROY

ROA

R09

R10

R11

R1z

R13

R1d

R15

R1E

R17Y

R1a

Program Cou,,,

0000006

0= 10FF
00000
00000
00000
200457
1,0000 MHz
2004597, 00 us

(S EEA 0L

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
004
003
000

Jinclude "mlZ8def.inc”

Jdef ones_digit = rl16

.def tens_digit = r17

.def temp = rig

[MIT: [di r16, high{RAMEND) ;
out aPH, r16
[di r16, low(RAMEND)
out sFL, rl16
[di ones_digit,34
rcall DIGITS

o= DOHE: Fimp DiOME

DIGITS:
push temp
[di tens_digit,0
[di temp, 10

REFPEAT: sub ones_digit, temp
Brmi MIHLS
inc tens_digit
rimp REFPELT

MINUS: add ones_digit,temp
pop temp
ret

e T OC (N L MME e T o G

Initialize the stack pointer high byte

; Initialize the stack pointer low byte

88

