ATmega128

Lock Bits & Fuse Bits System Clock I/O Ports JTAG

Lock Bits

Bit No.	Description	Default Value	
7	-	1 (unprogrammed)	
6	_	1 (unprogrammed)	
5	Boot lock bit	1 (unprogrammed)	Drotect Dept Londer Costien
4	Boot lock bit	1 (unprogrammed)	Protect Boot Loader Section
3	Boot lock bit	1 (unprogrammed)	Protect Application Section
2	Boot lock bit	1 (unprogrammed)	Protect Application Section
1	Lock bit	1 (unprogrammed)	
0	Lock bit	1 (unprogrammed)	
	7 6 5 4 3 2 1	7-6-5Boot lock bit4Boot lock bit3Boot lock bit2Boot lock bit1Lock bit	7-1 (unprogrammed)6-1 (unprogrammed)5Boot lock bit1 (unprogrammed)4Boot lock bit1 (unprogrammed)3Boot lock bit1 (unprogrammed)2Boot lock bit1 (unprogrammed)1Lock bit1 (unprogrammed)

Table 115. Lock Bit Byte

"1" means unprogrammed, "0'means programmed Note:

Table 116. Lock Bit Protection Modes

Memory Lock Bits		ts	Protection Type	
LB mode	LB2	LB1		
1	1	1	No memory lock features enabled.	
2	1	0	Further programming of the Flash and EEPROM is disabled in Parallel and SPI/JTAG Serial Programming mode. The Fuse bits are locked in both Serial and Parallel Programming mode. ⁽¹⁾	Write Prote
3	0	0	Further programming and verification of the Flash and EEPROM is disabled in Parallel and SPI/JTAG Serial Programming mode. The Fuse bits are locked in both Serial and Parallel Programming mode. ⁽¹⁾	Read/Write

tection

e Protection

Fuse Bits: Extended Fuse Byte

Table 117. Extended Fuse Byte

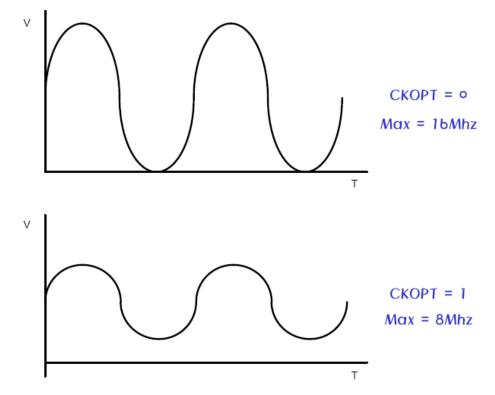
Extended Fuse Byte	Bit No.	Description	Default Value
-	7	_	1
-	6	_	1
-	5	_	1
-	4	_	1
-	3	_	1
-	2	_	1
M103C ⁽¹⁾	1	ATmega103 compatibility mode	0 (programmed)
WDTON ⁽²⁾	0	Watchdog Timer always on	1 (unprogrammed)

Fuse Bits: Fuse High Bytes

Fuse High Byte	Bit No.	Description	Default Value	
OCDEN ⁽⁴⁾	7	Enable OCD	1 (unprogrammed, OCD disabled)	OCDR Register Access
JTAGEN ⁽⁵⁾	6	Enable JTAG	0 (programmed, JTAG enabled)	
SPIEN ⁽¹⁾	5	Enable Serial Program and Data Downloading	0 (programmed, SPI prog. enabled)	
CKOPT ⁽²⁾	4	Oscillator options	1 (unprogrammed)	Amplitude Adjust.
EESAVE	3	EEPROM memory is preserved through the Chip Erase	1 (unprogrammed, EEPROM not preserved)	
BOOTSZ1	2	Select Boot Size (see Table 112 for details)	0 (programmed) ⁽³⁾	
BOOTSZ0	1	Select Boot Size (see Table 112 for details)	0 (programmed) ⁽³⁾	
BOOTRST	0	Select Reset Vector	1 (unprogrammed)	

Fuse Bits: Fuse Low Byte

Fuse Low Byte	Bit No.	Description	Default Value
BODLEVEL	7	Brown out detector trigger level	1 (unprogrammed)
BODEN	6	Brown out detector enable	1 (unprogrammed, BOD disabled)
SUT1	5	Select start-up time	1 (unprogrammed) ⁽¹⁾
SUT0	4	Select start-up time	0 (programmed) ⁽¹⁾
CKSEL3	3	Select Clock source	0 (programmed) ⁽²⁾
CKSEL2	2	Select Clock source	0 (programmed) ⁽²⁾
CKSEL1	1	Select Clock source	0 (programmed) ⁽²⁾
CKSEL0	0	Select Clock source	1 (unprogrammed) ⁽²⁾


Power Level Detector 1: 2.7/ o:4.0/ Start Up time

Clock Source Selection

Fuse Bits

Clock Point 1 - CKOPT

The CKOPT fuse selects between two different Oscillator Amplifier modes

PonyProg2000(obsolete)

PonyProg 2000 Setting

Configuration and Security bits	Configuration and Security bits
□ 7 □ 6 □ BootLock12 □ BootLock11 □ BootLock02 □ BootLock01 □ Lock2 □ Lock1	□ 7 □ 6 □ BootLock12 □ BootLock11 □ BootLock02 □ BootLock01 □ Lock2 □ Lock1
□ 7 □ 6 □ 5 □ 4 □ 3 □ 2 ₩ M103C □ WDTON	
CODEN V JTAGEN V SPIEN CKOPT CESAVE V BOOTSZ1 V BOOTSZ0 BOOTRST	CODEN T JTAGEN T SPIEN T CKOPT T EESAVE T BOOTSZ1 T BOOTSZO BOOTRST
□ BODLEVEL □ BODEN □ SUT1 □ SUT0 □ CKSEL3 □ CKSEL2 □ CKSEL1 □ CKSEL0	F BODLEVEL F BODEN F SUT1 F SUTO F CKSEL3 F CKSEL2 F CKSEL F CKSEL0
Checked items means programmed (bit = 0)	Checked items means programmed (bit = 0)
Refer to device datasheet, please	Refer to device datasheet, please
Clear All Set All Write Read	Cancel Clear All Set All Write Read

Default Status

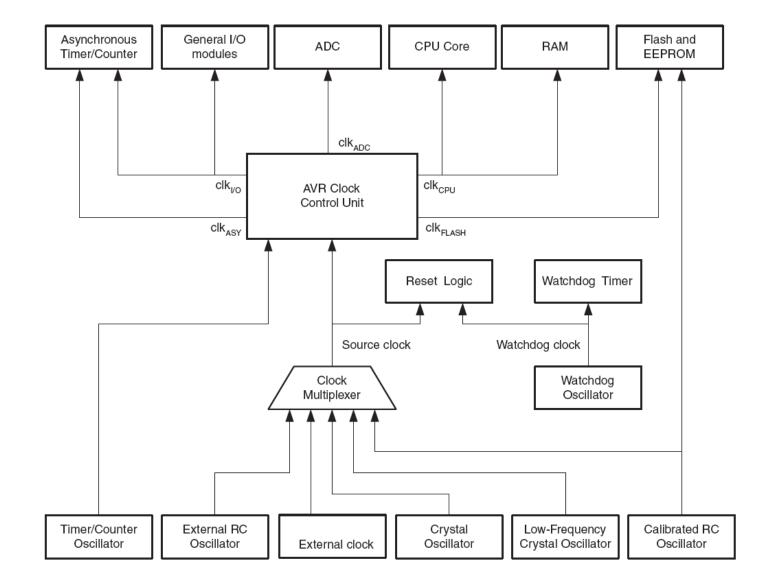
Atmel Studio

ð	Start Pa	age - At	tmelStudio						
File	Edit	View	VAssistX	Debug	Too	s Window	Help		
6	- 0	約 -	'a + 놀 🔛	¥ 🖌	>	Command Pr	ompt		þ
	ř 🔳	→ 1	6	÷ ?	1	Device Pack	Manager		
Start	Page ⊰	×			sta	Device Progr	amming	Ctrl+Shift+P	
Start	ruge		a		2	Add target			

JTAGICE mkII (00B00002822) - Device Programming ?							
Tool Device JTAGICE mkII Y ATmega	Interface I128 TITAG CAPPLY		rget Voltage 4.9 V Read	¢			
Interface settings	Use external reset						
Tool information	Use external reset						
Device information	JTAG Daisy chain settings						
Oscillator calibration	Target device is part of a JTA	G daisy chain					
Memories	List all chained devices below. T	he first line represents the devi	ce with TDO con	nected to the	e too		
Fuses	Description	IR Length					
Lock bits							
Production file	Detect Devices Now						
				S	et		

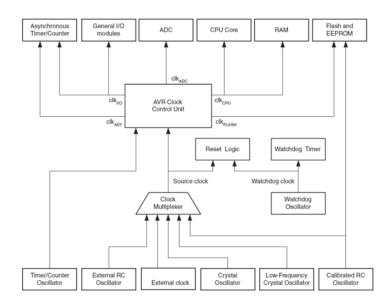
Fuses

JTAGICE mkll (00B00000282	2) - Device Programming	? ×
Tool Device JTAGICE mkll v ATmeg	Interface JTAG Y	Device signature Target Voltage Apply 0x1E9702 Read 4.9 V Read
Interface settings	Fuse Name	Value
Tool information		
Device information	HIGH.SPIEN HIGH.EESAVE	
Oscillator calibration	WHIGH.BOOTSZ	Boot Flash size=4096 words start address=\$F000 ~
Memories	HIGH.BOOTRST	boot riasit size=4090 words start address=3r000
Fuses	WHIGH.CKOPT	
Lock bits	V LOW.BODLEVEL	Brown-out detection level at VCC=4.0 V ×
Production file	V LOW.BODEN	
	✓ LOW.SUT_CKSEL	Ext. Crystal/Resonator High Freq.; Start-up time: 16K CK + 64 ms 🗡
	Fuse Register Value	
	EXTENDED 0xFF HIGH 0x81	
	LOW 0x3F	
	 ✓ Auto read ✓ Verify after program 	Copy to clipboard ming Program Verify Read
Starting operation read regis Reading register EXTENDED. Reading register HIGHOK Reading register LOWOK Read registersOK		
 Read registersOK 		

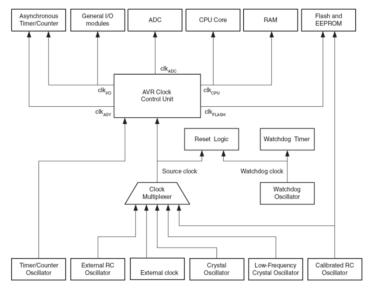

Lock bits

JTAGICE mkll (00B00000282	2) - Device Programn	ning		_		?	\times
Tool Device JTAGICE mkll ~ ATmega	Interfa a128 • JTAG		Device signature 0x1E9702 Read	Target Voltage	*		
Interface settings Tool information Device information Oscillator calibration Memories Fuses	Lock Bit LOCKBIT.LB LOCKBIT.BLB0 LOCKBIT.BLB1	No lock on SF	Value ock features enabled PM and LPM in Applicatio PM and LPM in Boot Sect				
Lock bits Production file	LOCKBIT	Value IxFF				to clipb	
Verify after programming To clear lockbits, use Erase Chip on the Memories page. Starting operation read registers Reading register LOCKBITOK Read registersOK							
 Read registersOK 							

Memories


JTAGICE mkll (00B000002822)	- Device Programming			? ×
Tool Device JTAGICE mkll V ATmega	Interface I28 TITAG Y Apply	Device signature 0x1E9702 Read	Target Voltage 4.9 V Read	
Interface settings Tool information Device information Oscillator calibration Memories Fuses	Device Erase Chip ✓ Erase now Flash (128 KB) ✓ Erase device before programm ✓ Verify Flash after programmin ✓ Advanced		Program Verify	Read
Lock bits Production file	EEPROM (4 KB)	ming	Program Verify	Read
Starting operation read register Reading register LOCKBITOK Read registersOK				

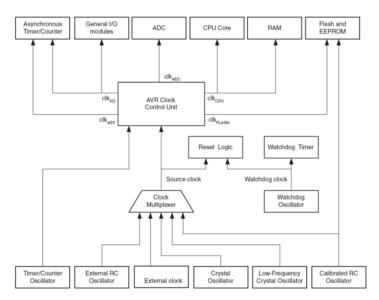
System Clock


CPU Clock – clk_{CPU}

- The CPU clock is routed to parts of the system concerned with operation of the AVR core.
- Examples of such modules are the General Purpose Register File, the Status Register and the data memory holding the Stack Pointer.
- Halting the CPU clock inhibits the core from performing general operations and calculations.

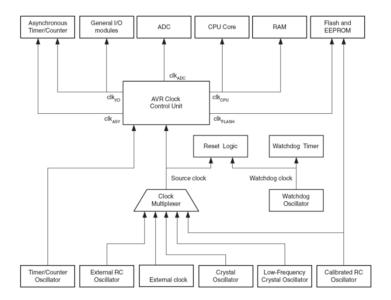
I/O Clock – clk_{I/O}

- The I/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and USART.
- The I/O clock is also used by the External Interrupt module, but note that some external interrupts are detected by asynchronous logic, allowing such interrupts to be detected even if the I/O clock is halted. Also note that address recognition in the TWI module is carried out asynchronously when clkI/O is halted, enabling TWI address reception in all sleep modes.



Flash Clock – clk_{FLASH}

 The Flash clock controls operation of the Flash interface. The Flash clock is usually active simultaneously with the CPU clock.


Async Timer Clock – clk_{ASY}

- Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked directly from an external 32 kHz clock crystal.
- The dedicated clock domain allows using this Timer/Counter as a realtime counter even when the device is in sleep mode.

ADC Clock – clk_{ADC}

- The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks in order to reduce noise generated by digital circuitry.
- This gives more accurate ADC conversion results.

Clock Sources

Device Clocking Option	CKSEL30 ⁽¹⁾
External Crystal/Ceramic Resonator	1111 - 1010
External Low-frequency Crystal	1001
External RC Oscillator	1000 - 0101
Calibrated Internal RC Oscillator	0100 - 0001
External Clock	0000

Table 6. Device Clocking Options Select

Note: 1. For all fuses "1" means unprogrammed while "0" means programmed.

Default Clock Source

The device is shipped with CKSEL = "0001" and SUT = "10". The default clock source setting is therefore the Internal RC Oscillator with longest startup time. This default setting ensures that all users can make their desired clock source setting using an In-System or Parallel Programmer.

Crystal Oscillator

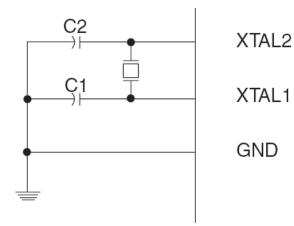
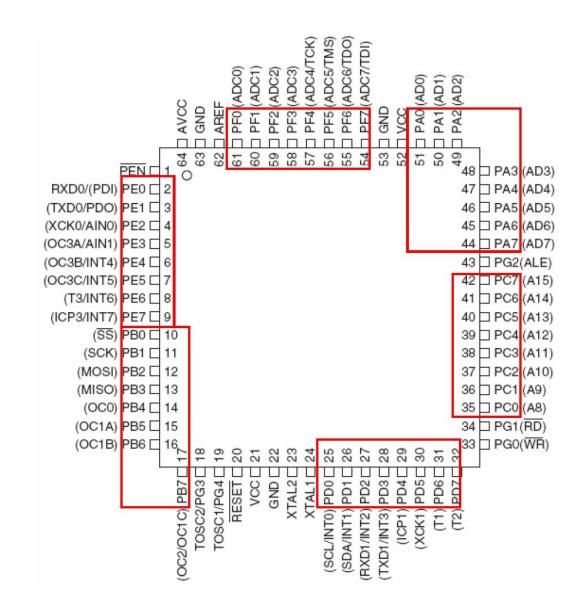


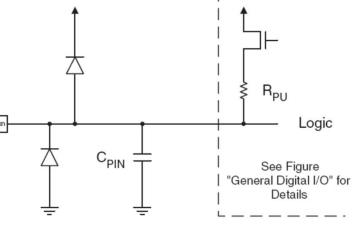
 Table 8. Crystal Oscillator Operating Modes

•	Hz) C1 and C2 for Use with Crystals
01 ⁽¹⁾ 0.4	- 0.9 —
0.9	- 3.0 12 pF - 22 pF
111 3.0	- 8.0 12 pF - 22 pF
110, 111 1	.0 - 12 pF - 22 pF
	10 0.9 11 3.0


Note: 1. This option should not be used with crystals, only with ceramic resonators.

Crystal Oscillator

CKSEL0	SUT10	Start-up Time from Power-down and Power-save	Additional Delay from Reset (V _{CC} = 5.0V)	Recommended Usage
0	00	258 CK ⁽¹⁾	4.1 ms	Ceramic resonator, fast rising power
0	01	258 CK ⁽¹⁾	65 ms	Ceramic resonator, slowly rising power
0	10	1K CK ⁽²⁾	_	Ceramic resonator, BOD enabled
0	11	1K CK ⁽²⁾	4.1 ms	Ceramic resonator, fast rising power
1	00	1K CK ⁽²⁾	65 ms	Ceramic resonator, slowly rising power
1	01	16K CK	_	Crystal Oscillator, BOD enabled
1	10	16K CK	4.1 ms	Crystal Oscillator, fast rising power
1	11	16K CK	65 ms	Crystal Oscillator, slowly rising power

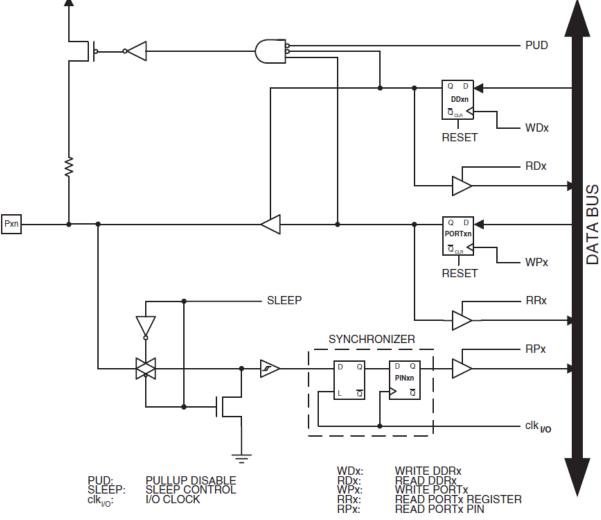

Table 9. Start-up Times for the Crystal Oscillator Clock Selection

I/O Ports

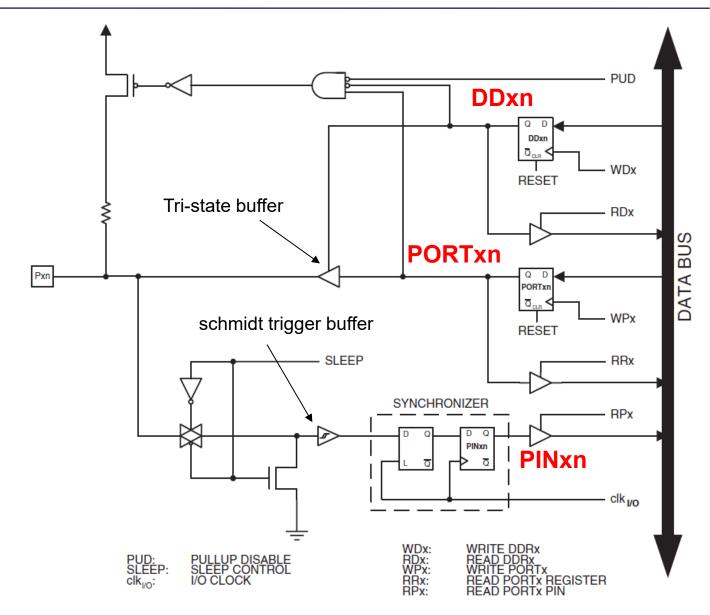
I/O Ports

- Three I/O memory address locations allocated for each port
 - Data Register PORTx
 - Data Direction Register DDRx
 - Port Input Pins PINx
- PINx : read only
- PORTx, DDRx : read/write
- Programmable Pull-up Register
 - Pull-up Disable: PUD bit in SFIOR disables the pull-up function for all pins in all ports

I/O Port Registers

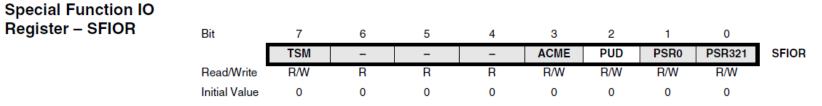

Example for Port A

Port A Data Register – PORTA	Bit	7	6	5	4	3	2	1	0	
		PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	PORTA
	Read/Write	R/W								
	Initial Value	0	0	0	0	0	0	0	0	
Port A Data Direction										
Register – DDRA	Bit	7	6	5	4	3	2	1	0	_
5		DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	DDRA
	Read/Write	R/W	•							
	Initial Value	0	0	0	0	0	0	0	0	
Port A Input Pins										
Address – PINA	Bit	7	6	5	4	3	2	1	0	_
		PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	PINA
	Read/Write	R	R	R	R	R	R	R	R	•
	Initial Value	N/A								


Data Register – PORTx → PORTxn Data Direction Register – DDRx → DDxn Port Input Pins – PINx → PINxn

ATmega128 Port Architecture

 Port: bi-directional I/O ports with optional internal pull-ups

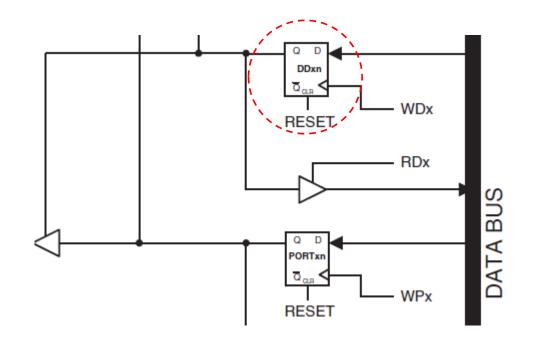


General Digital I/O

Port Pin Configurations

DDxn	PORTxn	PUD (in SFIOR)	I/O	Pull-up	Comment
0	0	Х	Input	No	Tri-state (Hi-Z)
0	1	0	Input	Yes	Pxn will source current if ext. pulled low.
0	1	1	Input	No	Tri-state (Hi-Z)
1	0	Х	Output	No	Output Low (Sink)
1	1	Х	Output	No	Output High (Source)

• Bit 2 – PUD: Pull-up disable

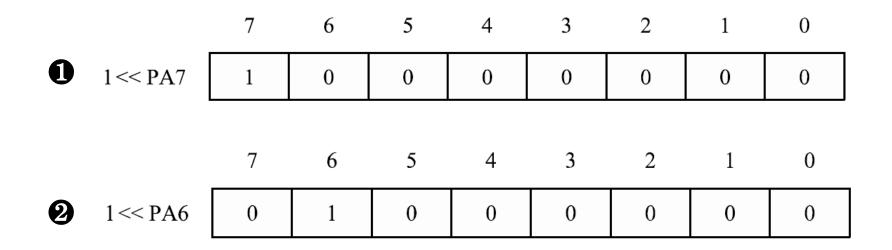

Register – SFIOR

When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See "Configuring the Pin" on page 67 for more details about this feature.

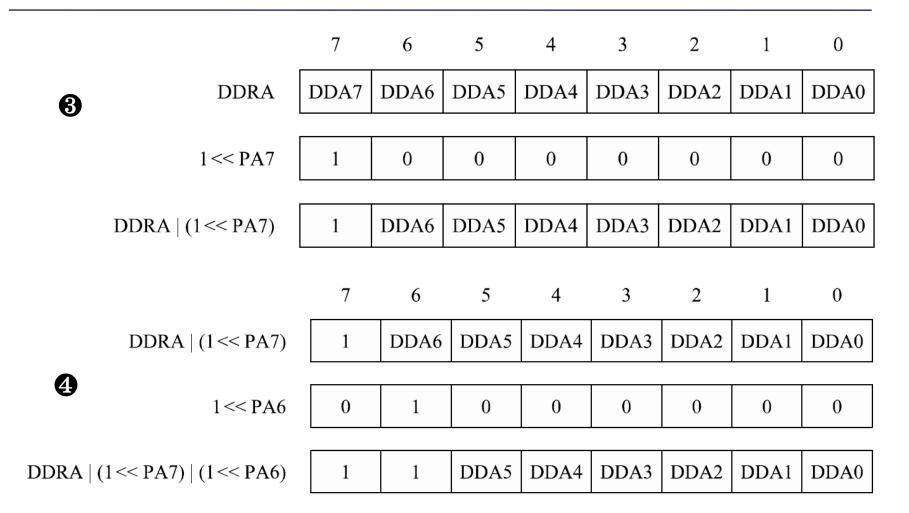
Configuring the Pin - DDxn

DDxn bit in the DDRx Register

- Selects the direction of the pin
- 1: output, 0: input


Bitwise Operation Example

#include <avr/io.h>


[B포트의 DDRB, PORTB, PINB 레지스터와 비트명]

/* DDRB *	/		/* PORTB	*/		/* PINB *	/	
#define	DDB7	7	#define	PB7	7	#define	PINB7	7
#define	DDB6	6	#define	PB6	6	#define	PINB6	6
#define	DDB5	5	#define	PB5	5	#define	PINB5	5
#define	DDB4	4	#define	PB4	4	#define	PINB4	4
#define	DDB3	3	#define	PB3	3	#define	PINB3	3
#define	DDB2	2	#define	PB2	2	#define	PINB2	2
#define	DDB1	1	#define	PB1	1	#define	PINB1	1
#define	DDB0	0	#define	PB0	0	#define	PINB0	0

DDRA = DDRA $| (1 \langle \langle PA7 \rangle | (1 \langle \langle PA6 \rangle);$

Bitwise Operation Example

Alternate Functions of Port A

The Port A has an alternate function as the address low byte and data lines for the External Memory Interface.

Port Pin	Alternate Function
PA7	AD7 (External memory interface address and data bit 7)
PA6	AD6 (External memory interface address and data bit 6)
PA5	AD5 (External memory interface address and data bit 5)
PA4	AD4 (External memory interface address and data bit 4)
PA3	AD3 (External memory interface address and data bit 3)
PA2	AD2 (External memory interface address and data bit 2)
PA1	AD1 (External memory interface address and data bit 1)
PA0	AD0 (External memory interface address and data bit 0)

Table 27. Port A Pins Alternate Functions

Alternate Functions of Port B

Table 30. Port B Pins Alternate Functions

Port Pin	Alternate Functions
PB7	OC2/OC1C ⁽¹⁾ (Output Compare and PWM Output for Timer/Counter2 or Output Compare and PWM Output C for Timer/Counter1)
PB6	OC1B (Output Compare and PWM Output B for Timer/Counter1)
PB5	OC1A (Output Compare and PWM Output A for Timer/Counter1)
PB4	OC0 (Output Compare and PWM Output for Timer/Counter0)
PB3	MISO (SPI Bus Master Input/Slave Output)
PB2	MOSI (SPI Bus Master Output/Slave Input)
PB1	SCK (SPI Bus Serial Clock)
PB0	SS (SPI Slave Select input)

Alternate Functions of Port C

Table 33. Port C Pins Alternate Functions

Port Pin	Alternate Function
PC7	A15
PC6	A14
PC5	A13
PC4	A12
PC3	A11
PC2	A10
PC1	A9
PC0	A8

Alternate Functions of Port D

Table 36. Port D Pins Alternate Functions

Port Pin	Alternate Function
PD7	T2 (Timer/Counter2 Clock Input)
PD6	T1 (Timer/Counter1 Clock Input)
PD5	XCK1 ⁽¹⁾ (USART1 External Clock Input/Output)
PD4	ICP1 (Timer/Counter1 Input Capture Pin)
PD3	INT3/TXD1 ⁽¹⁾ (External Interrupt3 Input or UART1 Transmit Pin)
PD2	INT2/RXD1 ⁽¹⁾ (External Interrupt2 Input or UART1 Receive Pin)
PD1	INT1/SDA ⁽¹⁾ (External Interrupt1 Input or TWI Serial DAta)
PD0	INT0/SCL ⁽¹⁾ (External Interrupt0 Input or TWI Serial CLock)

Alternate Functions of Port E

Table 39.	Port E	Pins Alternate	Functions
-----------	--------	----------------	-----------

Port Pin	Alternate Function
PE7	INT7/ICP3 ⁽¹⁾ (External Interrupt 7 Input or Timer/Counter3 Input Capture Pin)
PE6	INT6/ T3 ⁽¹⁾ (External Interrupt 6 Input or Timer/Counter3 Clock Input)
PE5	INT5/OC3C ⁽¹⁾ (External Interrupt 5 Input or Output Compare and PWM Output C for Timer/Counter3)
PE4	INT4/OC3B ⁽¹⁾ (External Interrupt4 Input or Output Compare and PWM Output B for Timer/Counter3)
PE3	AIN1/OC3A ⁽¹⁾ (Analog Comparator Negative Input or Output Compare and PWM Output A for Timer/Counter3)
PE2	AIN0/XCK0 ⁽¹⁾ (Analog Comparator Positive Input or USART0 external clock input/output)
PE1	PDO/TXD0 (Programming Data Output or UART0 Transmit Pin)
PE0	PDI/RXD0 (Programming Data Input or UART0 Receive Pin)

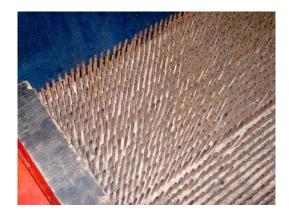
Alternate Functions of Port F

Port Pin	Alternate Function
PF7	ADC7/TDI (ADC input channel 7 or JTAG Test Data Input)
PF6	ADC6/TDO (ADC input channel 6 or JTAG Test Data Output)
PF5	ADC5/TMS (ADC input channel 5 or JTAG Test Mode Select)
PF4	ADC4/TCK (ADC input channel 4 or JTAG Test ClocK)
PF3	ADC3 (ADC input channel 3)
PF2	ADC2 (ADC input channel 2)
PF1	ADC1 (ADC input channel 1)
PF0	ADC0 (ADC input channel 0)

Alternate Functions of Port G

Table 45. Port G Pins Alternate Function
--

Port Pin	Alternate Function
PG4	TOSC1 (RTC Oscillator Timer/Counter0)
PG3	TOSC2 (RTC Oscillator Timer/Counter0)
PG2	ALE (Address Latch Enable to external memory)
PG1	RD (Read strobe to external memory)
PG0	WR (Write strobe to external memory)

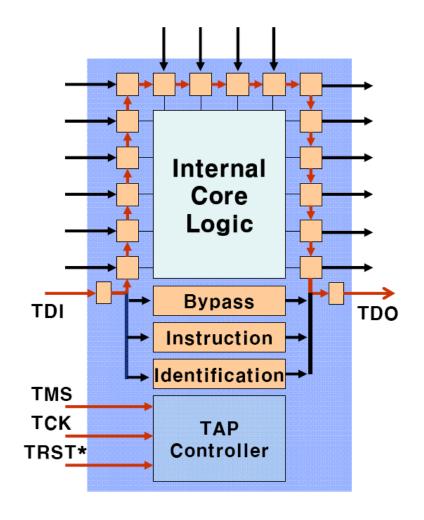

JTAG/IEEE1149.1

▪ 배경

- 초기에는 조립된 PCB(Printed Circuit Board)의 시험을 목적으로 연구
- 기존의 테스트: Bed-of-Nails Probing
- 디바이스 패키징 및 부품 실장 기술 발전
 - SMD 출현, 핀의 고집적화(예:BGA)
 - ・ 고집적, 표면 실장, 양면 실장, 다층화
- Physical access가 어렵게 되어 기존 방법으로 테스트가 어려움
- Programmable logic device의 on-board programming이 요구됨

▪ 해결책

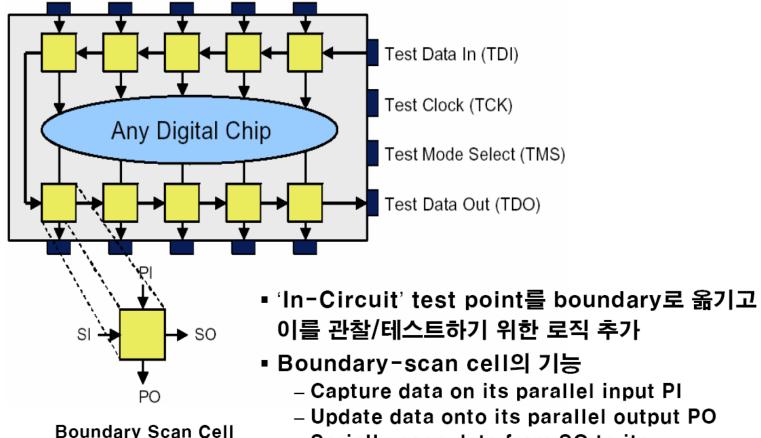
- 테스트를 위해 표준화된 로직(TAP) 및 테스트 핀 (Boundary Scan Cell)을 칩에 내장
- 테스트 방법 표준화
 - Boundary Scan Architecture
 - Test Access Port(TAP)


JTAG/IEEE1149.1

- 많은 프로세서 제조업체가 JTAG interface를 확장 및 응용
 - On-chip debug feature (e.g. on-chip breakpoints)에 접근 및 제어
 - DRAM 등의 메모리 접근 또는 플래시 등의 로직 디바이스 프로그래밍
- JTAG interface는 시리얼 인터페이스를 가지며 기본적으로 다음 5개의 signal로 구성
 - nTRST: test reset
 - TMS: test mode select
 - TDI: test data input
 - TDO: test data output
 - TCK: test clock

■ 디버그 목적으로 몇 개의 신호를 추가

- nRESET(=nSRST): chip reset
- VTref: 기준 전압 제공
- DBGRQ, DBGACK: 외부 trigger signal을 사용


JTAG/IEEE1149.1

- 칩 내부에 본래의 기능을 구현한 Core Logic과 테스트 및 기타 목적을 위한 JTAG 블록이 있다
- JTAG 블록은 TAP Controller와 Register들로 구성되어 있으며 TDI, TDO를 통해 데이터를 주고 받을 수 있 다
- JTAG operation은 TAP controller 에 의해 제어된다

◆ IEEE 1149.1 Device Architecture

JTAG: Boundary Scan

- Serially scan data from SO to its neighbor's SI
- Behave transparently: PI passes to PO