Interrupts

Definition of the Interrupt

= An event that requires the CPU to stop the current
program execution and perform some service related to
the event.

= A simple analogy
= Reading a book and the phone rings
= Stop reading and get the phone
= Talk..
= Return to the book where one read and resume to read

= The phone call is an interrupt and the talk is an interrupt
service routine (ISR) or an interrupt handler.

Interrupt Service Routine (ISR)

= An interrupt service routine (ISR) is a software routine
that hardware invokes in response to an interrupt

LAN Driver
Current OS5 .
Thread of Execution '“';;L';'mes[fsr;']‘e

http://support.novell.com/techcenter/articles/img/anal995050101.gif

Executing task on the Microprocessor

Main program
Keyboard ISR

Printer ISR

P
-

Time

http://ece-research.unm.edu/jimp/310/slides/8086_interrupts-1.gif

Polling vs. Interrupt-driven

= Polling
= Actively samples the status of an external devices.
= Keep checking the port see if the switch is being pressed.

= [nterrupt-driven programs
= |nterrupt service routines take care of polling a device’s status.
= The main loop does not need to pay attention to the switch.

Why are interrupt used?

= Coordinate I/O activities and prevent the CPU from being
tied up during data transfer process.

= The CPU needs to know if the 1/O is ready before it can proceed.
Without the interrupt capability, the CPU needs to check the
status of the I/O device continuously.

= Perform time-critical applications.
= Many emergent events require the CPU to take action
immediately.
= The interrupt mechanism provides a way to force the CPU to
divert from normal program execution and take immediate
actions.

Interrupt Vector and Interrupt Vector Table

Refers to the starting address of an interrupt service
routine (ISR) or an Interrupt handler.

Interrupt vectors are stored in a table called an interrupt
vector table.

The interrupt vector table must be stored in a memory
location agreed upon by the microprocessor

The microprocessor knows how to find the vector table
(and thus the ISR)

Interrupt Sequence

The device that requires service sets its flag bit when an event
takes place.

The microprocessor detects that a flag is set, verifies that the
corresponding enable bit is also set, and triggers an interrupt.

The processor status is saved automatically on the stack.

The microprocessor looks up the interrupt vector (the address of
the ISR) for that device and puts the address into the PC.

The microprocessor runs the ISR.

At the end of the ISR, IRET must be used. IRET is a special form of
return instruction which restores the processor status, so that
returns to the original program.

Interrupt Vectors

Table 23. Reset and Interrupt Vectors

Vector Program
No. Address® | Source Interrupt Definition
External Pin, Power-on Reset, Brown-out Reset,

1 $0000'" RESET Watchdog Reset, and JTAG AVR Reset
2 $0002 INTO External Interrupt Request 0

3 $0004 INT1 External Interrupt Request 1

4 $0006 INT2 External Interrupt Request 2

5 $0008 INT3 External Interrupt Request 3

6 $000A INT4 External Interrupt Request 4

7 $000C INTS External Interrupt Request 5

8 $000E INTE External Interrupt Request 6

9 $0010 INT7 External Interrupt Request 7

10 $0012 TIMER2 COMP Timer/Counter2 Compare Match

11 $0014 TIMER2 OVF Timer/Counter2 Overflow

12 $0016 TIMER1 CAPT Timer/Counter1 Capture Event

13 $0018 TIMER1 COMPA | Timer/Counter1 Compare Match A

14 $001A TIMER1 COMPB | Timer/Counter1 Compare Match B

15 $001C TIMER1 OVF Timer/Counter1 Overflow

16 $001E TIMERO COMP Timer/Counter0 Compare Match

17 $0020 TIMERO OVF Timer/CounterO Overflow

Interrupt Vectors

18 $0022 SPI, STC SPI Serial Transfer Complete

19 $0024 USARTO, RX USARTO, Rx Complete

20 $0026 USARTO, UDRE | USARTO Data Register Empty

21 $0028 USARTO, TX USARTO, Tx Complete

22 $002A ADC ADC Conversion Complete

23 $002C EE READY EEPROM Ready

24 $002E ANALOG COMP | Analog Comparator

25 $0030® | TIMER1 COMPC | Timer/Countre1l Compare Match C
26 $0032® | TIMER3 CAPT Timer/Counter3 Capture Event

27 $0034® | TIMER3 COMPA | Timer/Counter3 Compare Match A
28 $0036® | TIMER3 COMPB | Timer/Counter3 Compare Match B
29 $0038 | TIMER3 COMPC | Timer/Counter3 Compare Match C
30 $003A® | TIMER3 OVF Timer/Counter3 Overflow

Interrupt Vectors

Vector Program
No. Address®® | Source Interrupt Definition
31 $003C® | USART1, RX USART1, Rx Complete
32 $003E®) USART1, UDRE | USART1 Data Register Empty
33 $0040) USART1, TX USART1, Tx Complete
34 $00423 | TWI Two-wire Serial Interface
35 $0044°) | SPM READY Store Program Memory Ready

Table 24. Reset and Interrupt Vectors Placement

BOOTRST IVSEL | Reset Address Interrupt Vectors Start Address
1 0 $0000 $0002
1 1 $0000 Boot Reset Address + $0002
0 0 Boot Reset Address $0002
0 1 Boot Reset Address Boot Reset Address + $0002

Note:

The Boot Reset Address is shown in Table 112 on page 284. For the BOOTRST fuse “1” means

unprogrammed while “0” means programmed.

Typical Program setup for Interrupt

Address LabelsCode Comments

50000 jmp RESET ; Reset Handler

50002 jmp EXT INTO ; IRQO Handler

50004 jmp EXT INT1 ; IRQ1 Handler

50006 jmp EXT INT2 ; IRQZ Handler

50008 jmp EXT INT3 ; IRQ3 Handler

$000A jmp EXT INT4 ; IRQ4 Handler

$s000cC jmp EXT INT5 ; IRQ5 Handler

SO000E jmp EXT INT6 ; IRQ6 Handler

$0010 jmp EXT INT7 ; IRQ7 Handler

50012 jmp TIM2 COMP ; Timer2 Compare Handler
50014 jmp TIM2Z OVF ; Timer2 Overflow Handler
$s0016 jmp TIM1 CAPT ; Timerl Capture Handler
50018 jmp TIM1 COMPA; Timerl Comparelk Handler
s001Aa jmp TIM1 COMPB; Timerl CompareB Handler
s001cC jmp TIM1 OVF ; Timerl Overflow Handler
SO001E jmp TIMO COMP ; Timer(Q Compare Handler

$0020 jmp TIMO OVF ; Timer(0 Overflow Handler

External Interrupts

Table 23. Reset and Interrupt Vectors

Vector Program
No. Address® | Source Interrupt Definition
External Pin, Power-on Reset, Brown-out Reset,
1 $0000" | RESET Watchdog Reset, and JTAG AVR Reset
2 $0002 INTO External Interrupt Request 0
3 $0004 INT External Interrupt Request 1
4 $0006 INT2 External Interrupt Request 2
5 $0008 INT3 External Interrupt Request 3
6 $000A INT4 External Interrupt Request 4
7 $000C INTS External Interrupt Request 5
8 $000E INT6 External Interrupt Request 6
9 $0010 INT7 External Interrupt Request 7

External Interrupt Registers

External Interrupt Control Register A - EICRA
External Interrupt Control Register B - EICRB
External Interrupt Mask Register - EIMSK
External Interrupt Flag Register - EIFR

External Interrupt Control Register A - EICRA

Bit 7 6 5 4 3 2 1 0

ISC31 ISC30 ISC21 ISC20 ISC11 ISC10 ISCO1 ISC00 EICRA
Read/Write R/W R/W R/W R/W R/W R'W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Table 48. Interrupt Sense Control"

ISCnh1 | ISCn0 | Description

0 0 The low level of INTn generates an interrupt request.
0 1 Reserved
1 0 The falling edge of INTn generates asynchronously an interrupt request.

1 1 The rising edge of INTn generates asynchronously an interrupt request.

== - L] TE =

Bit 7 6 5 4 3 2 1 0

ISCT1 ISCT0 ISC61 ISC60 ISC51 ISC50 ISC41 ISC40 EICRB
Read/Write R/W R/W R/wW RW R/W R'W R/W R/wW
Initial Value 0 0 0 0 0 0 0 0

ISCn1 | ISCn0 | Description

0 0 The low level of INTh generates an interrupt request.

0 1 Any logical change on INTn generates an interrupt request

The falling edge between two samples of INTn generates an interrupt
request.

The rising edge between two samples of INTn generates an interrupt
request.

Bit 7 6 5 4 3 2 1 0

EINISK

Read/Write R/W R/W R/W R/W R/W
Initial VValue 0 0 0 0 0 0 0 0

* Bits 7..0 - INT7 — INTO: External Interrupt Request 7 - 0 Enable

When an INT7 — INTO bit is written to one and the I-bit in the Status Register (SREG) is set
(one), the corresponding external pin interrupt is enabled. The Interrupt Sense Control bits in the
External Interrupt Control Registers — EICRA and EICRB — defines whether the external inter-
rupt is activated on rising or falling edge or level sensed. Activity on any of these pins will trigger
an interrupt request even if the pin is enabled as an output. This provides a way of generating a

software interrupt.

Global Interrupt Enable

Bit 7 6 5 4 3 2 1 o

[7 [W T s TV T N] 7z] ¢] snea
Read/Write R/W R/W RwW R/W RwW R/W RwW R/W
Initial Value 0 0 0 0 0 0 0 0

» Bit 7 - I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual inter-
rupt enable control is then performed in separate control registers. If the Global Interrupt Enable
Register is cleared, none of the interrupts are enabled independent of the individual interrupt
enable settings. The I|-bit is cleared by hardware after an interrupt has occurred, and is set by
the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared in
software with the SEI| and CLI instructions, as described in the instruction set reference.

Bit 7 6 5 4 3 2 1 o

INTF7 INTF6 INTF5 INTF4 INTF3 INTF2 INTFA IINTFO EIFR
Read/Write R/'W RW R/W RW RWwW R/'W R'W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bits 7..0 — INTF7 - INTFO: External Interrupt Flags 7 - 0

When an edge or logic change on the INT7:0 pin triggers an interrupt request, INTF7:0 becomes
set (one). If the I-bit in SREG and the corresponding interrupt enable bit, INT7:0 in EIMSK, are
set (one), the MCU will jump to the interrupt vector. The flag is cleared when the interrupt routine
is executed. Alternatively, the flag can be cleared by writing a logical one to it. These flags are
always cleared when INT7:0 are configured as level interrupt. Note that when entering sleep
mode with the INT3:0 interrupts disabled, the input buffers on these pins will be disabled. This
may cause a logic change in internal signals which will set the INTF3:0 flags. See “Digital Input
Enable and Sleep Modes” on page 70 for more information.

Example: Photo Interrupter

ATmegal28 EE=

330
330
A C PDO(INTO) PAD ¥ Vv |
SZ q_E

W

§
:

Polling

#include

#define GET_NOW (PIND & 1<<PDO ? 1

{avr/io.h)

© 0) 4/ PDOJ}t HIGH & 12

2t

int main(void)
{ int now, prev;

DDRA = 1<<PAG; // PAG 2%, Ppo Y3 MY

PORTD |= 1<<PDO; // PDO US0| S 4

while(1){

for(prev = now = GET_NOW; !(now == 1 && prev == 0); now=GET_NOW) // PDO A0l K| 2 At
prev = now,

PORTA "= 1<<PAO;
}

return 0,

// PA® Q| LED A

Interrupt driven

#include {avr/io.h)
#include {avr/interrupt.h)
volatile int req INTO =1; // 2z 2%

ISR(INTO vect)
{ req INTO = 0; } /l SY B J|E

int main(void)

{ DDRA = 1{{PAO; // PAO 28 %3k 4%
EIMSK |= 1<<INTO; // INTO QIHZE &3}
EICRA = 3<<ISC00; /I &s0A] PIHYERZ 23
PORTD |= 1<<PD®; // PDO(INTO) T LSO EQPAE MY
sei(); /] A QIHEHE 245t
while(1){

if(req INTO == 0){
PORTA "= 1<{{PAG; // PAO | LED PrH
req INTO = 1; /1 CHA| 233t
}
}

return ©;

	Interrupts
	Definition of the Interrupt
	Interrupt Service Routine (ISR)
	Polling vs. Interrupt-driven
	Why are interrupt used?
	Interrupt Vector and Interrupt Vector Table
	Interrupt Sequence
	Interrupt Vectors
	Interrupt Vectors
	Interrupt Vectors
	Typical Program setup for Interrupt
	External Interrupts
	External Interrupt Registers
	External Interrupt Control Register A - EICRA
	슬라이드 번호 15
	슬라이드 번호 16
	Global Interrupt Enable
	슬라이드 번호 18
	Example: Photo Interrupter
	Polling
	Interrupt driven

