
Introduction to Embedded 
Software Engineering 

A Brief Introduction to Advanced 
Concepts 



Requirement
s Analysis 

V Model Overview 
Requirements 
Specification 

Functional 
Testing 

Architectural 
Design 

Integration 
Testing 

Detailed 
Design 

Integration 
Testing 

Coding S/W Unit 
Testing 

Validation provided by testing 

Code 

Review 

Review 

Review 

Review 

 



Implementing the V 

1. Requirements specification 
 Define what the system must do 

2. Architectural (high-level) module and test 
design (state-based, control-flow-based) 

3. Detailed module and test design  
4. Coding and Code Inspections 
 



Implementing the V 

1. Requirements specification 
2. Architectural (high-level) module and test 

design (state-based, control-flow-based) 
 Define big-picture view of what pieces will 

exist, how they will fit together, and how they 
will be tested 

3. Detailed module and test design  
4. Coding and Code Inspections 
 



Implementing the V 

1. Requirements specification 
2. Architectural (high-level) module and test 

design (state-based, control-flow-based) 
3. Detailed module and test design  
 Now we design the software, using flow 

charts or finite state machines 
 Also define module tests (discussed at end 

of lecture) 
4. Coding and Code Inspections 
 



Software Design Methods 



Overview 
• Software Goals 
• Why design software before coding it? 
• How should software be designed? 

– Pseudo-code 
– Flow charts 
– State machines 

• How should software be coded (written)? 
 

• Useful books  
– The Practice of Programming, Brian W. Kernighan 

& Rob Pike, Addison Wesley, 1999 
– Real-Time Systems Development, Rob Williams, 

Butterworth-Heinemann/Elsevier, 2006 



Software Goals 

• Simplicity – software is short and simple 
 

• Clarity – software is easy for humans and 
machines to understand 
 

• Generality – software can be used for a 
broad range of situations 



Why Design First? 
“He who fails to plan, plans to fail” 
“Poor planning produces predictably poor performance” 
• Software offers tremendous flexibility in implementing systems 

– Many methods work OK for small programs, but few of these work fine 
for large or real-time programs 

– Easy to choose a method which does not scale well to large programs 
• Starting coding early forces designer to make implementation decisions 

early, before understanding impact on rest of system (and other 
programmers) 

• Even in programs of moderate size, the details obscure the larger picture 
(“Can’t see the forest for the trees”) 
– “What are the independent processes within this system?” 
– “Who else can modify this variable?” 
– “How often will this function run?” 
– “How quickly will the system respond?” 

• Companies which don’t design their software before coding spend much 
more time and money debugging code, assuming they stay in business long 
enough to start selling the product 



Software Design 
Representations 

• Pseudocode 
– Easy to write but vague 

• Flow Chart 
– Good for describing an algorithm: steps in 

processing, with conditional (if-else) and 
repeated (loop) execution 

• State machine 
– Good for describing system with multiple 

states (operating modes) and transition rules  



Pseudo Code 
• Pseudo code is written in English to describe the 

functionality of a particular software module (subroutine) 
• Include name of module/subroutine, author, date, 

description of functionality of module, and actual steps 
• Often you can take the pseudo code and use them lines 

in your program as comments 
• Avoid a very fine level of detail (although this may 

sometimes be difficult to do) 
• Avoid writing code – use English, not assembly language 

(or higher-level language) instructions 



Flowchart 

Do a Task 

START 

END 

Input/  
Output 

Decision? 
Yes 

No 

• Shows flow of control in a 
processing activity (what 
gets done) 

• Used to show steps in a 
process, including 
decision-making 

• Does not scale well: 
becomes confusing if 
larger than a page 



What is State-Based Behavior? 
• System is in exactly one of multiple possible states. State: 

– time at which system is stable  
– with constant output conditions 
– awaiting valid trigger events 

• A transition between states is triggered by a specific event or events 
(typically from an input) 
– Transitions may have associated activities (processing, output) 
– Guard conditions may prevent transition from occurring, despite event 

occurence 
• Finite State Diagram (FSD) specifies all states and transitions 
• Mealy vs. Moore 

– Mealy: activities occur while entering state. Outputs defined by state 
and transition event. 

– Moore: activities occur within state or while leaving state. Outputs 
defined only by current state. 



Example: State Descriptions 
and Transitions 

• Flash LEDs in sequence 
– Right: red-yellow-green-off 
– Left: green-yellow-red-off 

• States 
– R: only red LED on 
– Y: only yellow LED on 
– G: only green LED on 
– O: all LEDs off 

Current 
State 

Next State 
(Direction= 
Left) 

Next State 
(Direction= 
Right) 

R O Y 

Y R G 

G Y O 

O R G 

R Y G 

O 

Right Right 

Right Right 

Left Left 

Left Left 



How Should Software be Coded? 
• Code has two requirements 

– To work 
– To communicate how it works to the author and others 

• After the code’s author wins the lottery and quits the company, how hard 
do you want it to be to pick up the pieces? 

• Variations in coding styles confuse the reader, so define two aspects of coding 
style to avoid variation  
– Syntax 
– Semantics 

• So use a Coding Standard or Style Guide to define correct practices 
– Naming conventions 
– Memory allocation 
– Portability 
– ISRs 
– Comments 
– File locations 
– Eliminates arguments over minor issues 



Example Coding Style 
Guidelines 

1. Names 
1. Use descriptive names for global variables, short names for locals 
2. Use active names for functions (use verbs): Initialize_UART 
3. Be clear what a boolean return value means! Check_Battery vs. 

Battery_Is_Fully_Charged 
2. Consistency and idioms 

1. Use consistent indentation and brace styles 
2. Use idioms (standard method of using a control structure): e.g. for loop  
3. Use else-if chains for multi-way branches 

3. Expressions and statements 
1. Indent to show structure 
2. Make expressions easy to understand, avoid negative tests 
3. Parenthesize to avoid ambiguity 
4. Break up complex expressions 
5. Be clear: child = (!LC&&!RC)?0:(!LC?RC:LC); is not clear 
6. Be careful with side effects: array[i++] = i++; 



Example Coding Style 
Guidelines 

4. Macros 
1. Parenthesize the macro body and arguments 

#define square(x)    ((x) * (x)) 
5. Magic numbers 

1. Give names to magic numbers with either #define or enum 
#define MAX_TEMP (551) 
enum{ MAX_TEMP = 551, /* maximum allowed temperature */ 
            MIN_TEMP =  38,   /* minimum allowed temperature */ }; 

2. Use character constants rather than integers: if ch==65 ????  if ch 
==‘A’ 

3. Use language to calculate the size of an object: sizeof(mystruct) 
6. Comments 

1. Clarify, don’t confuse 
2. Don’t belabor the obvious 
3. Don’t comment bad code – rewrite it instead 
4. Don’t contradict the code 



Example Coding Style 
Guidelines 

7. Use a standard comment block at the entry of each function 
1. Function Name 
2. Author Name 
3. Date of each modification 
4. Description of what function does 
5. Description of arguments 
6. Pre-conditions 
7. Description of return value 
8. Post-conditions 

8. Defensive programming 
1. Upon entering a function, verify that the arguments are valid 
2. Verify intermediate results are valid 
3. Is the computed value which is about to be returned valid? 
4. Check the value returned by any function which can return an invalid 

value 
9. No function should be more than 60 lines long, including comments.  



Run-Time Methods for Making 
Embedded Systems Robust 



Today 
• Need to make embedded systems robust 

– Implementation flaws: Code may have 
implementation bugs 

– Design flaws: Real world may not behave the way we 
expected and designed for 

– Component failures: Sometimes things break 
• Run-time mechanisms for robust embedded systems 

– Watchdog timer 
– Stack-pointer monitor 
– Voltage brown-out detector 



Watchdog Timer Concepts (WDT) 

• Goal: detect if software is not operating correctly 
• Assumption: healthy threads/tasks will periodically send 

a heartbeat (“I’m alive”) signal 
• Mechanism 

– Use heartbeat signals from tasks to restart a timer 
– If timer ever expires, the system is sick, so reset 

• Typically used as a final, crude catastrophic mechanism 
for forcing system software back into known state 

Time 

WDT 
Value 

Start WDT 

WDT times out, 
resets system 

Restart WDT Restart WDT 



Time-Out Actions 
• Simple solution: reset entire system 

– May need to explicitly toggle reset pin to ensure CPU is fully 
reset (rather than just jumping to reset ISR) 

– Reset should configure all I/O to safe state 
• NMI Solution: generate non-maskable interrupt for debug 

– Use NMI ISR to save picture of CPU and thread state 
– Can then examine what happened with debugger or in-circuit 

emulator 
• WDT Time-Out flag in memory 

– Set flag upon time-out before reset 
– Examine this bit in reset ISR to determine whether to boot 

system normally or with debug mode (without overwriting RAM) 



Mechanisms for robust 
embedded systems 

 
• Watchdog timer 

 
• Stack-pointer monitor 

 
• Brown-out detector 



Stack Pointer Monitor 
• What makes the stack grow? 

– Nested subroutine calls – each adds 5 bytes (3 
bytes for return address, 2 bytes for dynamic link) 

• Local data in the subroutine call – automatic 
variables 

• Arguments passed to the subroutine 
– Nested interrupt handling – each adds 4 bytes (3 

bytes for return address, 1 byte for flag register) 
• Local storage for the interrupt 

• How large does the stack get? 
– Starts at the top of RAM, grows to smaller 

addresses 
– Will overwrite heap or global data if gets too 

large 
– Need to allocate space for multiple stacks in 

system with a preemptive scheduler 

Global Data 

0xFFFFF 

0x00000 

Heap 

A Stack 

B Stack 

Instructions 

Thread A 

Thread B 

0x07F7F 

SF Regs 
0x00400 

Monitor RAM 0x07FFF 



Mechanisms for robust 
embedded systems 

 
• Watchdog timer 

 
• Stack-pointer monitor 

 
• Voltage brown-out detector 



Voltage brown-Out Detector 
• Black-out == total loss of electricity 
• Brown-out == partial loss of electricity 

– Voltage is low enough that the system is not guaranteed to work 
completely 

– We can’t guarantee that it won’t do anything at all. Parts may 
still work.  

• “CPU runs, except for when trying to do multiplies” 
 

• Want to detect brown-out automatically 
– Possibly save critical processor information to allow warm boot 
– Then hold processor in reset state until brown-out ends 



 Sharing the Processor:  
A Survey of Approaches to 

Supporting Concurrency 



Today 
• Topic - How do we make the processor do 

things at the right times? 
– For more details see Chapter 5 of D.E. 

Simon, An Embedded Software 
Primer, Addison-Wesley 1999 

• There are various methods; the best fit 
depends on…  
– system requirements – response time 
– software complexity – number of 

threads of execution 
– resources – RAM, interrupts, energy 

available 



Round-Robin/Super-Loop 
• Extremely simple 

– No interrupts 
– No shared data 

problems 
 

• Poll each device (if 
(device_A_ready()))  

• Service it with task code 
when needed 

void main(void) { 
  while (TRUE) { 
    if (device_A_ready()) { 
      service_device_A(); 
    } 
    if (device_B_ready()) { 
      service_device_B(); 
    } 
    if (device_C_ready()) { 
      service_device_C(); 
    } 
 
  } 
} 



Example Round-Robin 
Application 

void DMM_Main(void) { 
  enum {OHMS_1, ... VOLTS_100} SwitchPos; 
 while (TRUE) { 
  switch (SwitchPos) { 
  case OHMS_1: 
   ConfigureADC(OHMS_1); 
   EnableOhmsIndicator(); 
   x = Convert(); 
   s = FormatOhms(x); 
   break; 
  ... 
  case VOLTS_100: 
   ConfigureADC(VOLTS_100); 
   EnableVoltageIndicator(); 
   x = Convert(); 
   s = FormatVolts(x); 
   break; 
  } 
  DisplayResult(s); 
  Delay(50); 
  } 
} 
 
 



Problems with Round-Robin 
• Architecture supports multi-rate systems very poorly 

– Voice Recorder: sample microphone at 20 kHz, sample switches at 15 
Hz, update display at 4 Hz. How do we do this? 

• Polling frequency limited by time to execute main loop 
– Can get more performance by testing more often (A/Z/B/Z/C/Z/...) 
– This makes program more complex and increases response time for 

other tasks 
• Potentially Long Response Time  

– In worst case, need to wait for all devices to be serviced 
 

• Fragile Architecture 
– Adding a new device will affect timing of all other devices 
– Changing rates is tedious and inhumane 



Event-Triggered using Interrupts 
• Very basic architecture, useful for simple low-power devices, very little 

code or time overhead 
• Leverages built-in task dispatching of interrupt system 

– Can trigger ISRs with input changes, timer expiration, UART data 
reception, analog input level crossing comparator threshold 

• Function types 
– Main function configures system and then goes to sleep 

• If interrupted, it goes right back to sleep 
– Only interrupts are used for normal program operation 

• Example: bike computer 
– Int1: wheel rotation  
– Int2: mode key 
– Int3: clock 
– Output: Liquid Crystal Display  



Bike Computer Functions 

 

ISR 1:  
Wheel rotation 

ISR 2:  
Mode Key 

ISR 3:  
Time of Day Timer 

Configure timer, 
inputs and  
outputs 
 
cur_time = 0; 
rotations = 0; 
tenth_miles = 0; 
 
while (1) { 
  sleep; 
} 

Reset 
rotations++; 
if (rotations> 
  R_PER_MILE/10) { 
  tenth_miles++; 
  rotations = 0; 
} 
speed =  
 circumference/ 
 (cur_time – prev_time); 
compute avg_speed; 
prev_time = cur_time; 
return from interrupt 

mode++; 
mode = mode % 
   NUM_MODES; 
return from interrupt; 

cur_time ++; 
lcd_refresh--; 
if (lcd_refresh==0) { 
 convert tenth_miles 
    and display 
 convert speed 
    and display 
  if (mode == 0) 
    convert cur_time 
      and display 
  else  
    convert avg_speed 
      and display 
  lcd_refresh =  
     LCD_REF_PERIOD 
} 



Problems with Event-Triggered 
using Interrupts 

• All computing must be triggered by an event of some type 
– Periodic events are triggered by a timer 

• Limited number of timers on MCUs, so may need to introduce a 
scheduler of some sort which  
– determines the next periodic event to execute,  
– computes the delay until it needs to run 
– initializes a timer to expire at that time 
– goes to sleep (or idle loop) 

• Everything (after initialization) is an ISR 
– All code is in ISRs, making them long 
– Response time depends on longest ISR. Could be too slow, 

unless interrupts are re-enabled in ISR 
– Priorities are directly tied to MCU’s interrupt priority scheme 



Round-Robin with Interrupts 
• Also called 

foreground/background 
• Interrupt routines 

– Handle most urgent 
work 

– Set flags to request 
processing by main 
loop 

• More than one priority level 
– Interrupts – multiple 

interrupt priorities 
possible 

– main code 
 

BOOL DeviceARequest, DeviceBRequest, 
DeviceCRequest; 
void interrupt HandleDeviceA(){ 
  /* do A’s urgent work */ 
  ... 
  DeviceARequest = TRUE; 
} 
void main(void) { 
  while (TRUE) { 
    if (DeviceARequest) { 
      FinishDeviceA(); 
    } 
    if (DeviceBRequest) { 
      FinishDeviceB(); 
    } 
    if (DeviceCRequest) { 
      FinishDeviceC(); 
    } 
  } 
} 



Problems with Round-Robin 
with Interrupts 

• All task code has same priority 
– What if device A must be handled quickly, but FinishDeviceC (slow) 

is running? 
– Difficult to improve A’s response time 

• Only by moving more code into ISR 
• Shared data can be corrupted easily if interrupts occur during critical 

sections 
– Flags (DeviceARequest, etc.), data buffers 
– Must use special program constructs 

• Disable interrupts during critical sections 
• Semaphore, critical region, monitor 

– New problems arise – Deadlock, starvation 



Real-Time Operating System 
(RTOS, Kernel, ...) 

• As with previous methods 
– ISRs handle most urgent operations  
– Other code finishes remaining work 

• Differences: 
– The RTOS can preempt (suspend) a task to 

run something else. 
– Signaling between ISRs and task code 

(service functions) handled by RTOS.  
– We don’t write a loop to choose the next task 

to run. RTOS chooses based upon priority. 



Why These Differences Matter 
• Signaling handled by RTOS 

– Shared variables not needed, so programming is easier 
• RTOS chooses next task to run 

– Programming is easier 
• RTOS can preempt tasks, and therefore schedule freely 

– System can control task code response time (in addition to 
interrupt routine response time) 

– Worst-case wait for highest-priority task doesn’t depend on 
duration of other tasks. 

– System’s response (time delay) becomes more stable 
• A task’s response time depends only on higher-priority tasks 

(usually – more later) 



More RTOS Issues 
• Many RTOS’s on the market 

– Already built and debugged 
– Debug tools typically included 
– Full documentation (and source code) available 

• Main disadvantage: RTOS costs resources (e.g. uC/OSII compiled 
for 80186. YMMV) 
– Compute Cycles: 4% of CPU 
– Money:  ??? 
– Code memory: 8.3 KBytes 
– Data memory: 5.7 KBytes 

 



Comparison of Priority Levels Available 

 

High 

Low 

Device A ISR 
Device B ISR 
Device ... ISR 
Device Z ISR 
Task 1 Code 

Task 4 Code 
Task 3 Code 
Task 2 Code 

Task 6 Code 
Task 5 Code 

Device A ISR 
Device B ISR 
Device ... ISR 
Device Z ISR 
All Task Code 

All Code 

Round-Robin 
Round-Robin 
+ Interrupts 

Function-Queue, 
RTC and 

RTOS 


	Introduction to Embedded Software Engineering
	V Model Overview
	Implementing the V
	Implementing the V
	Implementing the V
	Software Design Methods
	Overview
	Software Goals
	Why Design First?
	Software Design Representations
	Pseudo Code
	Flowchart
	What is State-Based Behavior?
	Example: State Descriptions and Transitions
	How Should Software be Coded?
	Example Coding Style Guidelines
	Example Coding Style Guidelines
	Example Coding Style Guidelines
	Run-Time Methods for Making Embedded Systems Robust
	Today
	Watchdog Timer Concepts (WDT)
	Time-Out Actions
	Mechanisms for robust embedded systems
	Stack Pointer Monitor
	Mechanisms for robust embedded systems
	Voltage brown-Out Detector
	 Sharing the Processor: �A Survey of Approaches to Supporting Concurrency
	Today
	Round-Robin/Super-Loop
	Example Round-Robin Application
	Problems with Round-Robin
	Event-Triggered using Interrupts
	Bike Computer Functions
	Problems with Event-Triggered using Interrupts
	Round-Robin with Interrupts
	Problems with Round-Robin with Interrupts
	Real-Time Operating System (RTOS, Kernel, ...)
	Why These Differences Matter
	More RTOS Issues
	Comparison of Priority Levels Available

