Chapter 12 Feedback Control

Stabilization

We want to stabilize the system

$$\dot{x} = f(x, u)$$

at the equilibrium point $x=x_{
m ss}$

Steady-State Problem: Find steady-state control $u_{\rm ss}$ s.t.

$$egin{align} 0 &= f(x_{ ext{ss}}, u_{ ext{ss}}) \ &x_\delta = x - x_{ ext{ss}}, &u_\delta = u - u_{ ext{ss}} \ &\dot{x}_\delta = f(x_{ ext{ss}} + x_\delta, u_{ ext{ss}} + u_\delta) \stackrel{ ext{def}}{=} f_\delta(x_\delta, u_\delta) \ &f_\delta(0,0) = 0 \ &u_\delta = \gamma(x_\delta) \;\; \Rightarrow \;\; u = u_{ ext{ss}} + \gamma(x - x_{ ext{ss}}) \ \end{aligned}$$

State Feedback Stabilization: Given

$$\dot{x} = f(x, u) \qquad [f(0, 0) = 0]$$

find

$$u = \gamma(x) \qquad [\gamma(0) = 0]$$

s.t. the origin is an asymptotically stable equilibrium point of

$$\dot{x} = f(x, \gamma(x))$$

f and γ are locally Lipschitz functions

Linear Systems

$$\dot{x} = Ax + Bu$$

(A,B) is stabilizable (controllable or every uncontrollable eigenvalue has a negative real part)

Find K such that (A - BK) is Hurwitz

$$u = -Kx$$

Typical methods:

- Eigenvalue Placement
- Eigenvalue-Eigenvector Placement
- LQR

Linearization

$$\dot{x} = f(x, u)$$

f(0,0)=0 and f is continuously differentiable in a domain $D_x imes D_u$ that contains the origin $(x=0,\ u=0)$ $(D_x \subset R^n, D_u \subset R^p)$

$$\dot{x} = Ax + Bu$$

$$A = \left. \frac{\partial f}{\partial x}(x, u) \right|_{x=0, u=0}; \quad B = \left. \frac{\partial f}{\partial u}(x, u) \right|_{x=0, u=0}$$

Assume (A,B) is stabilizable. Design a matrix K such that (A-BK) is Hurwitz

$$u = -Kx$$

Closed-loop system:

$$\dot{x} = f(x, -Kx)$$

$$\dot{x} = \left[\frac{\partial f}{\partial x}(x, -Kx) + \frac{\partial f}{\partial u}(x, -Kx) (-K) \right]_{x=0} x$$

$$= (A - BK)x$$

Since (A - BK) is Hurwitz, the origin is an exponentially stable equilibrium point of the closed-loop system

Example (Pendulum Equation):

$$\ddot{\theta} = -a\sin\theta - b\dot{\theta} + cT$$

Stabilize the pendulum at $\theta = \delta$

$$0 = -a\sin\delta + cT_{\rm ss}$$

$$x_1 = \theta - \delta, \quad x_2 = \dot{\theta}, \quad u = T - T_{\mathrm{ss}}$$

$$\dot{x}_1 = x_2$$
 $\dot{x}_2 = -a[\sin(x_1 + \delta) - \sin \delta] - bx_2 + cu$

$$A = \left[egin{array}{ccc} 0 & 1 \ -a\cos(x_1+\delta) & -b \end{array}
ight]_{x_1=0} = \left[egin{array}{ccc} 0 & 1 \ -a\cos\delta & -b \end{array}
ight]$$

$$A = \left[egin{array}{ccc} 0 & 1 \ -a\cos\delta & -b \end{array}
ight]; \quad B = \left[egin{array}{c} 0 \ c \end{array}
ight]$$

$$K = \left[egin{array}{cc} k_1 & k_2 \end{array}
ight]$$

$$A-BK=\left[egin{array}{ccc} 0 & 1 \ -(a\cos\delta+ck_1) & -(b+ck_2) \end{array}
ight]$$

$$k_1 > -\frac{a\cos\delta}{c}, \quad k_2 > -\frac{b}{c}$$

$$T = \frac{a\sin\delta}{c} - Kx = \frac{a\sin\delta}{c} - k_1(\theta - \delta) - k_2\dot{\theta}$$

Notions of Stabilization

$$\dot{x} = f(x,u), \quad u = \gamma(x)$$

Local Stabilization: The origin of $\dot{x} = f(x, \gamma(x))$ is asymptotically stable (e.g., linearization)

Regional Stabilization: The origin of $\dot{x}=f(x,\gamma(x))$ is asymptotically stable and a given region G is a subset of the region of attraction (for all $x(0) \in G$, $\lim_{t\to\infty} x(t) = 0$) (e.g., $G \subset \Omega_c = \{V(x) \leq c\}$ where Ω_c is an estimate of the region of attraction)

Global Stabilization: The origin of $\dot{x} = f(x, \gamma(x))$ is globally asymptotically stable

Semiglobal Stabilization: The origin of $\dot{x}=f(x,\gamma(x))$ is asymptotically stable and $\gamma(x)$ can be designed such that any given compact set (no matter how large) can be included in the region of attraction (Typically $u=\gamma_p(x)$ is dependent on a parameter p such that for any compact set G, p can be chosen to ensure that G is a subset of the region of attraction)

What is the difference between global stabilization and semiglobal stabilization?

Example

$$\dot{x} = x^2 + u$$

Linearization:

$$\dot{x}=u, \quad u=-kx, \ k>0$$

Closed-loop system:

$$\dot{x} = -kx + x^2$$

Linearization of the closed-loop system yields $\dot{x} = -kx$. Thus, u = -kx achieves local stabilization

The region of attraction is $\{x < k\}$. Thus, for any set $\{x \le a\}$ with a < k, the control u = -kx achieves regional stabilization

The control u = -kx does not achieve global stabilization

But it achieves semiglobal stabilization because any compact set $\{|x| \le r\}$ can be included in the region of attraction by choosing k > r

The control

$$u = -x^2 - kx$$

achieves global stabilization because it yields the linear closed-loop system $\dot{x}=-kx$ whose origin is globally exponentially stable