Chapter 13
Feedback Linearization

Input-Output Linearization
Input-State Linearization



Stabllizing of the origin of the pendulum
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T = Az + B'y(x).[u — a(z)] | (13.1)

where A is nxn, B is nXxp, the pair (A, B) is controllable, the functions o : R™ — RP
and v : R™ — RP*P are defined in a domain D C R™ that contains the origin, and
the matrix v(z) is nonsingular for every x € D. If the state equation takes the form
(13.1), then we can linearize it via the state feedback

u=a(x)+ B(x)v - (13.2)

T = Az + B'y(x).[u — a(z)] | (13.1)

where A is nxn, B is nXxp, the pair (A, B) is controllable, the functions o : R™ — RP
and v : R™ — RP*P are defined in a domain D C R™ that contains the origin, and
the matrix v(z) is nonsingular for every x € D. If the state equation takes the form
(13.1), then we can linearize it via the state feedback

u=a(x)+ B(x)v - (13.2)
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Input-State Linearization

x = f(x, u)
X1 ==2xy+axy)+ sinx Z1 =X
Xy = — X COS X1 + U c0S(2x7) Zp=axy+ sinx

él ='"2Zl + 2y
zp =—21zy COS zq + €08z sinzy + au cos(2z)
1

U = (v—coszysinzy; +2zy COS zq)
a cos(2zq) : ! 1 1




Input-State Linearization
Z1=—2z1+z
: 1 2 V_—"—klzl—szz

22 =V
may choose
v=—22z, (6.16)
resulting in the stable closed-loop dynamics
.7;.’1 '—"—22'1 +22
52—_—— 222

whose poles are both placed at —2. In terms of the original state x; and x, , this
control law corresponds to the original input
1

u=_ - (=2ax,—2sinx,; —cosx Sinx; +2x; COS X 6.17
COS(le)( 2 1 | SInxy 1 1) (6.17)



Input-State Linearization

— O v=-Ka [ = e) -t x = f(x, 1)

linearization loop

pole-placement loop Z

Z=wW(X) fe—




Input-State Linearization

e The result, though valid in a large region of the state space, 1s not global.
The control law is not well defined when xy =(m/4 £ Ritl2): o= bl v
Obviously, when the initial state is at such singularity points, the controller
cannot bring the system to the equilibrium point.

e The input-state linearization is achieved by a combination of a state
transformation and an input transformation, with state feedback used in both.
Thus, it is a linearization by feedback, or feedback linearization. This is
fundamentally different from a Jacobian linearization for small range
operation, on which linear control is based.

e In order to implement the control law, the new state components (zy, Z9)
must be available. If they are not physically meaningful or cannot be
measured directly, the original state X must be measured and used to compute
them from (6.12).
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Input-State Linearization

e What classes of nonlinear systems can be transformed into linear systems?

e How to find the proper transformations for those which can?



When a change of variables z = T'(x) is used to transform the state equation
from the z-coordinates to the z-coordinates, the map T must be invertible; that
is, it must have an inverse map T 1(-) such that z = T~1(2) for all z € T(D),
where D is the domain of T". Moreover, because the derivatives of z and x should
be continuous, we require both 7'(-) and 7'"*(:) to be continuously differentiable. A
continuously differentiable map with a continuously differentiable inverse is known
as a diffeomorphism. If the Jacobian matrix [07'/0z] is nonsingular at a point zg €
D, then it follows from the inverse function theorem® that there is a neighborhood
N of zg such that T restricted to NV is a diffeomorphism on N. A map T is said to
be a global diffeomorphism if it is a diffeomorphism on R™ and T'(R™) = R™.2 Now
we have all the elements we need to define feedback linearizable systems.



Definition 13.1 A nonlinear system

T = f(-:,c) + G(z)u | (13.5)

where f : D — R™ and G : D — R™? are sufficiently smooth® on a domain
D C R™, is said to be feedback linearizable (or input-state linearizable) if there
exists a diffeomorphism T : D — R™ such that D, = T (D) contains the origin and
the change of variables z = T'(x) transforms the system (13.5) into the form

2= Az + By(z)[u — a(x)] (13.6)
with (A, B) controllable and v(zx) nonsingular for all z € D.



Input-Output Linearization

Let us now consider a tracking control problem. Consider the system
x = f(x, u) (6.19a)
y = h(X) (6.19b)

and assume that our objective is to make the output y(¢) track a desired trajectory y ;(¢)
while keeping the whole state bounded, where y,(f) and its time derivatives up to a
sufficiently high order are assumed to be known and bounded. An apparent difficulty
with this model is that the output y is only indirectly related to the input u, through the
state variable x and the nonlinear state equations (6.19). Therefore, it is not easy to
see how the input u can be designed to control the tracking behavior of the output y.
However, inspired by the results of section 6.1.1, one might guess that the difficulty of
the tracking control design can be reduced if we can find a direct and simple relation
between the system output y and the control input u. Indeed, this idea constitutes the
intuitive basis for the so-called input-output linearization approach to nonlinear
control design. Let us again use an example to demonstrate this approach.
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Input-Output Linearization
X1=sinxy+ (X9 +1)x3
Ry = X0+ X3
X3= x2+ u
y=x
y=ky = sinxy+ (xy+1)x3
y =@+ u+ f1(x)

f[1(x) = (x15 +x3) (X3 + cosxz) + (xo + 1)x 2



Input-Output Linearization

]
u = i
3;:1) €=)’(f)—)’d(f)
szd'—klé’—kzé E+k2é+k1€=0

seen in section 6.4 for SISO systems and in section 6.5 for MIMO systems. If we
need to differentiate the output of a system r times to generate an explicit relationship
between the output y and input u, the system is said to have relative degree r. Thus,
the system in the above example has relative degree 2. As will be shown soon, this
terminology is consistent with the notion of relative degree in linear systems (excess
of poles over zeros). As we shall see later, it can also be shown formally that for any
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Internal Dynamics

Therefore, a part of the system dynamics (described by one state component) has been
rendered "unobservable" in the input-output linearization. This part of the dynamics
will be called the internal dynamics, because it cannot be seen from the external input-
output relationship (6.21). For the above example, the internal state can be chosen to
be x3 (because x3, and y and y, constitute a new set of states), and the internal
dynamics is represented by the equation

( _);d(f) — k1€ — k2€ +f1 ) (626)

. 9 1
374 +x + 1
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Example: Internal Dynamics

. - - -

.;Cl x23 + U

.J.fz U
Yy =X
H=—I23“‘€(f)+5)d(f) f'?+€=0

.;(:2+X23:5’d_€ |5?d(f)‘“€|SD



Internal Dynamics of Linear

« Example
Xq Xy +~uﬁ
Xy - U
Yy=Xx

Systems

Y= Xy + U
U==xy+y;— =¥y
e+e=0

5(2 +.1'2 :j}d—' f’f(f)



Internal Dynamics of Linear

Systems
« Example
_jcl_ _x2+u_ Xy =X = e(f) = Yy
./;fz - ol
y=X
| =
Wip = L2 Wap)= L=




Internal Dynamics of Linear

Systems
z=Az+bu y=clz
b,+ b
y=cl(pI-A)"lbu = il u

a0+alp+a2p2+p3

1
a,+ayp+ayp*+p’




Internal Dynamics of Linear

Systems
_Xl_ i 0 i
d
— | X — 0
ds 2
,1’3 L—ﬂg —a1 —-a2
_xl
¥ = [bﬂ bl 0] X9
X3

5’ = boxz + b1x3

3;=b0‘i’.2+b1'i3 = b0x3+b](_aoxl —“ﬂlxz—az,l'3+u)
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Internal Dynamics of Linear

Systems
b, 1 S
u=(a,xytayxy+ayx3——x3) + —(—kje—kye+y,
by b1
€=y~ V4 E+k2é+k1€=0

the state vector, since one can easily show xy, y, and y are related to xy, xp, and x3
through a one-to-one transformation (and thus can serve as states for the system). We
then easily find from (6.36a) and (6.36b) that the internal dynamics is

: |
X] = Xy = b—l(y—boxl)

that 1s,

N 1
X1 +b_(: X1 = b—ly (640)



Zero Dynamics

- - -

'i:l .x23 + U

Xy u

L L o

Y =X

u=—xy—e(t) + 3, e+e=0
iz’“‘fz?’:j’d—e ly,()—el <D

A way to approach these difficulties is to define a so-called zero-dynamics for a
nonlinear system. The zero-dynamics is defined to be the internal dynamics of the
system when the system output is kept at zero by the input. For instance, for the
system (6.27), the zero-dynamics is (from (6.30))

Xy + 273 =0 (6.41)
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Control Design Based on
Input-Output Linearization

e differentiate the output y until the input u appears
e choose u to cancel the nonlinearities and guarantee tracking convergence

e study the stability of the internal dynamics



Input-Output Linearization

1 = asinxs
: Yy =2
Ty = —3:% + u
: 5 1
21 =21, 29 =asinzry, and u=z]+ v
a COS To
yield
21 = 22
22 = v



Input-Output Linearization

u=zxf+v Ty = U
y = T2
i‘l = @sin £
i’g - vV
y = 2

Note that the state variable z; is not connected to the output y. In other words,
the linearizing feedback control has made z; unobservable from y. When we design
tracking control, we should make sure that the variable z; is well behaved; that is,
stable or bounded in some sense. A naive control design that uses only the linear
input—output map may result in an ever-growing signal x; (t). For example, suppose
we design a linear control to stabilize the output y at a constant value . Then,
z1(t) = 21(0) +¢t asinr and, for sinr # 0, x1(¢) will grow unbounded. This internal
stability issue will be addressed by using the concept of zero dynamics.



Relative Degree

i = f(z) + g(@)u, y=h(x)

where f, g, and h are sufficiently smooth in a domain D
f:D— R"andg: D — R" are called vector fields on D

Y = %[f(a:) + g(x)u] def Lih(x) 4+ Lyh(x) u

Lyh(z) = 2" f(x)

IS the Lie Derivative of h with respect to f or along f



d(Lsh)

LyL¢h(x) = g(x)
L2h(x) = LyLsh() = 20 p(a)
k—lh
Lih(z) = LyLy 'h(z) = 8(Lg$ ) ()

LYh(z) = h(x)
y = Lyh(z) + Lgh(z) u
L,h(x) =0 = 9y = L¢h(x)

d(Lsh)
D

y® = [ (2) + g(@)u] = L2h(x) + LyLsh(z) u



LyLyh(z) =0 = y® = Lih(x)

y® = Lih(z) + LyL3h(2) u
LyL' 'h(z) =0, i=1,2,...,p— 1L LgL}{ 'h(z) # 0
y?) = Leh(x) + LyLy 'h(z) u
Definition: The system
= f(z) +g(x)u, y=h(z)
has relative degree p, 1 < p < n,in Dy C DifVx € Dy

1—1 . —1
LgL h(x) =0, t=1,2,...,p— 1; LQL? h(x) # 0



Example

21.71 — L2,
Example
3.31 = L2,

B9 = —x1+e(l—x?)za+u, y=x,
y:djlza’,‘z

. e 2

=229 = —x1+ (1 —x])x2 +u

Relative degree = 2 over R?

io = —x1+e(l—zf)xatu, y= xa,

y:zbzz—wl—l—s(l—@“%)a:g—l—u

Relative degree = 1 over R?

e >0

e >0



Example

L1 = To, L9 = —wl—l—a(l—a;'%)zcg—ku, Yy = wl—l—zcg, e >0

Y = x2 + 2z2[—x1 + (1 — x7) 2 + U]
Relative degree = 1 over {x2 # 0}
Example: Field-controlled DC motor

r1 = —axr1+tu, 2 = —brot+k—cxrix3, T3 = O0xr122, Y = T3
a, b, ¢, k, and @ are positive constants
Y = 23 = 012
y = Ox1@x2 + 122 = (+) + Ox2U

- Relative degree = 2 over {x2 # 0} -



Relative Degree of LTI System

G(s):Y(S): 3 532+4
U(s) s°+2s5°+3s+1
x| [0 1 0][x
X, =10 0 11X
X | -1 3 2| X
R
y=[4 5 0] x,
R




Relative Degree of LTI System

> 5
lx2>1x1>4 %"Y(s)
+




Normal Form

Change of variables:

¢1(x)
Pr—p() o i d(x) _ o _ Y| _
z=T(x) = _— — = | E o
h(x) - YP(x) R
L h) |

¢1 to ¢,,_, are chosen such that T'(x) is a diffeomorphism
on adomain Dy C D




i = SO @) + @)l = foln.€) + goln, E)u

& = &+, 1<i<p-—1

: 1

Ep, = L?h(x) LQL? h(x) u
y = &1

Choose ¢(x) such that T'(x) is a diffeomorphism and

ofok

ox

gx) =0, for1 <:<n—p, Va € Dy

Always possible (at least locally)

7:, — fO(na £)



Theorem 13.1: Suppose the system

i = f(@) +g(@)u, y=h(a)

has relative degree p (< n)in D. If p = n, then for every
xo € D, a neighborhood IN of x¢ exists such that the map
T (x) = ¢ (x), restricted to IV, is a diffeomorphism on N. If
p < n, then, for every g € D, a neighborhood N of xq
and smooth functions ¢¢(x),. .., ¢,—,(x) exist such that

OP;
ox

gx) =0, for1 <:<n—p

is satisfied for all x € N and the map T'(xz) = { zim; }
restricted to IV, is a diffeomorphism on NV "



Normal Form: 7 = fo(n, &)
& = &t 1<i<P—1

y=€1
0 1 0 0] 0
0 0 1 0 0
A, = , Be =
0 1 0
0 0 0 1]




n = .f()(na £)
é — AC&' -+ Bc L?h(az) -+ LQL?_I’?,(:B) ”

y = C
L?h(az)

v(@) = LyL5 'h(z), a(@) = — —=
d L,L? h(x)

£ = Ak + Bevy(z)[u — a(z)]

If £* Is an open-loop equilibrium point at which y = 0; I.e.,
f(x*) =0and h(xz*) = 0, then ¢)(xx) = 0. Take
¢(x*) = 0 so that z = 0 is an open-loop equilibrium point.



Zero Dynamics

7.7 — fﬂ(na 5)
£ = A+ Bey(z)[u — a(z))
y = C&

y()=0 = £6) =0 = u(t) = a(z(t)) = 1= fo(n,0)

Definition: The equation n = fo(n, 0) is called the zero
dynamics of the system. The system is said to be minimum
phase if zero dynamics have an asymptotically stable
equilibrium point in the domain of interest (at the origin if
T(0) = 0)

The zero dynamics can be characterized in the
x-coordinates



Z* ={x € Dy | h(z) = Lyh(z) = --- = L} 'h(z) = 0}

y(t) =0 = z(t) € Z*

def
= u=u () = a(x)|,cz

The restricted motion of the system is described by

i = f*(x) = [f(z) + g(z)a(z)],cpe



Example
r1 = T2, X2 = —x1+ (1 — Sc%)ﬂz‘z +u, Yy =x2

Q:i2:—$1—|—€(1—:}8%)$2—|—u = p=1
y(t) =0 = x2(t) =0 = 1 =0

Non-minimum phase



Example

2—|—a:§
1—|—a:§

T1 = —x1 + u, o = xr3, L3 = 13 + U, Y = T2

Yy = T2 = T3

Yy =x3 =x1x3+Uu = p =2
L%h(m)

Lgth(Sc)

Y = Lgth(:B) =1, a=— — —&L1L3

Z* = {xo = x3 = 0}
u=u"(x) =0 = &1 =—x

Minimum phase



Find ¢(x) such that

¢(0) = 0, %g(a:) — [ 9¢ 98¢  9¢ }

and

T(x) = [ o(x) x2 a3 }T

IS a diffeomorphism

¢ 2+:;c§+ 8¢

. 2 0
8331 1 _|_ 333 8333

d(r) = —x1 + x3 + tan~! x3




T
T(x) =| —x1 +x3+tan"tx3, x2, x3

IS a global diffeomorphism

n=—x1 +x3 +tan ' x3, & = w2, &2 = x3

L 2
n = (—7] + &2 + tan—! 52) 1 ° 53‘52
1+ &5

& = &
€2 (—n + &+ tan™! &2) €a +
y = &



	Chapter 13�Feedback Linearization
	Stabilizing of the origin of the pendulum
	슬라이드 번호 3
	슬라이드 번호 4
	슬라이드 번호 5
	Input-State Linearization
	Input-State Linearization
	Input-State Linearization
	Input-State Linearization
	Input-State Linearization
	슬라이드 번호 11
	슬라이드 번호 12
	Input-Output Linearization
	Input-Output Linearization
	Input-Output Linearization
	Internal Dynamics
	Example: Internal Dynamics
	Internal Dynamics of Linear Systems
	Internal Dynamics of Linear Systems
	Internal Dynamics of Linear Systems
	Internal Dynamics of Linear Systems
	Internal Dynamics of Linear Systems
	Zero Dynamics
	Control Design Based on Input-Output Linearization
	Input-Output Linearization
	Input-Output Linearization
	슬라이드 번호 27
	슬라이드 번호 28
	슬라이드 번호 29
	슬라이드 번호 30
	슬라이드 번호 31
	Relative Degree of LTI System
	Relative Degree of LTI System
	슬라이드 번호 34
	슬라이드 번호 35
	슬라이드 번호 36
	슬라이드 번호 37
	슬라이드 번호 38
	슬라이드 번호 39
	슬라이드 번호 40
	슬라이드 번호 41
	슬라이드 번호 42
	슬라이드 번호 43
	슬라이드 번호 44

