Chapter 13
Feedback Linearization

Input-State Linearization



Definition: A nonlinear system is in the controller form if
i = Az + Bry(x)[u — o(z)]
where (A, B) is controllable and ~(x) is a nonsingular
w=a(x)+~v (z)v = &= Ax+ Bv
The n-dimensional single-input (SI) system
&= f(z)+g(z)u
can be transformed into the controller form if 3 h(x) s.t.
= f(x) +g(x)u, y=h(x)

has relative degree n. \Why?



Transform the system into the normal form
z2=A.z+ By(z)|u—a(z)], y=C.z

On the other hand, if there is a change of variables
¢ = S(«x) that transforms the S| system

= f(x)+g(x)u
Into the controller form
¢ = A¢ + By(¢)[u — a(Q)]
then there is a function h(x) such that the system
= f(x) +g(x)u, y=h(z)

has relative degree n. \Why?




For any controllable pair (A, B), we can find a nonsingular
matrix M that transforms (A, B) into a controllable
canonical form:

MAM™'=A.+ B, MB=B.

2= M= MS(z) ¥ T(x)

2= Acz+ By(:)|u — af)]
h(x) = Ty (x)



In summary, the n-dimensional S| system

= f(r) +g(x)u

is transformable into the controller form if and only if 3 h(x)
such that

i = f(z) + g(@)u, y=hx)

has relative degree n
Search for a smooth function h(x) such that

1—1 . n—1
LgL h(x) =0, :=1,2,...,n—1, and LyL% h(x) # 0

T(x) = | h(x), th’(zc)a L;ﬂ’_lh(a:)



T.(X) = h(x)

L=VT(f()+90)u) = LT+ LT -u=LT, =T,
T, = VT,(f (%) +g(x)u) = V(L T)(f (x) + g(x)u)
— LfZT1 + Lg L, T,u= Lf2T1 =1,

Tn—l — Lr:‘_lTl — Tn
T, =VT,(f(x)+g(x)u) = V(LT'T)(f () + g(x)u)
=L, "T,+L,L, " Tu=v

1

U= n—1:
L, LT

(Vv-L,T,)



The Lie Bracket: For two vector fields f and g, the Lie
bracket | f, g|] is a third vector field defined by

Fr0l) = S (@) — 2 g(a)

Notation:
adjg(w) = g(x),  adsg(x) = [f,g](x)

adig(z) = [f,ad} 'g](z), k> 1

Properties:

® [f,g] = —lg, f]

# For constant vector fields f and g, [f,g] =0




Example

[fsg] = {

0 0
1 0

|

L2

L2

adfg: [fag] — |:

—sinx] — T9

— SN X1 — 9

{ 0
s g =
T1
0
— COS I
Tr1 + T2



o _ r _ — 1
a —
—sinxy — xo | 19 r1 + x9
adtg = [f,adsg] =

1 0] | o '

1 1 — SIn 1 — T9

_ 0 1 1] — 21

— COS 1 —1 I Ir9

_ — 1 — 2T9 _

r1 + xo — SInxr1 — X1 COS I




Distribution: For vector fields f1, f2, ..., fron D C R™, let
A(x) = span{ fi(x), fo(x),..., fu(x)}

The collection of all vector spaces A(x) for x € D is called
a distribution and referred to by

A = Spaﬂ{fla fa,. .. 9.fk}

If dim(A(x)) = kforall z € D, we say that A is a
nonsingular distribution on D, generated by f1, ..., fx
A distribution A is involutive if

g1 € A and go € A = [g1,gz]€A



Lemma: If A is a nonsingular distribution, generated by
fi, ---, fx, then itis involutive if and only if

[f®9fj] EA, V1S%J Sk

Example: D = R3; A = span{fi, f2}

2332 1
fi=| 1 |, fo=1| 0 |, dim(A(x)) =2, V€D
i 0 i _332 |
Y o0
[f1, f2] = B—;fl — 8—;1“2 = (1)




rank [f1(9_3)9 f2($)9 [fla f2](33)] —

rank

219
1
0

1 0
0 0

o ]__

=3, Ve D

A IS not involutive



Example: D = {x € R? | 2] + 23 # 0}; A = span{f1, fa}

213 —xT1
fi=| =1 |, fo=| —2x2 |, dim(A(x)) =2,Vax € D
I 0 ] . x3 |
_ g _
0 f2 o f1
’ — — — 2
[f1, f2] £y J1 Y P
— 0 —
) 2xry —x1 —4as |
rank | —1 —2x9 2 =2, Ve eD
i 0 Ir3 0 |

A IS Involutive



Theorem: The n-dimensional S| system

= f(x) +g(x)u

Is transformable into the controller form if and only if there is
a domain Dg such that

rank[g(a:),adfg(sc),...,ad lg(x)] =n, V€ Dg
and

span {g, ad¢g, ..., ad?_zg} is involutive in Dy



X =AX+ Bu
f(xX)=Ax,g(x)=B
ad.g=Vg-f-Vf.g=—-AB

ad.‘g=Vad,g-f -Vf-.ad,g=—-A(-AB) = A°B




The Frobenius Theorem

Consider the set of first-order partial differential equations

Eﬁfl+—a—hf2+§£f3=0 Vh-f =L .h=0 (6.44a)
axl 8x2 BX3
oh dh dh

add OF =0 g = — 6.44b
31, 81+ax2 82+ax3 83 Vh g Lgh 0 ( )

where fi(x{,x5,x3) and g;(xy,Xy,x3) (i=1,2,3) are known scalar functions of
X1,X9,X3, and h(xy,X5,x3) is an unknown function. Clearly, this set of partial
differential  equations is  uniquely defined by the two  vectors
f=(f; £ f)7.g=(g g g3 If a solution A(x|,x,,x3) exists for the above
partial differential equations, we shall say the set of vector fields {f, g} is completely
integrable.

L h =0 nN=3m=2n-m=1
U i=1,j=1,2 16/39



The Frobenius Theorem

The question now is to determine when these equations are solvable. This is not
obvious at all, a priori. The Frobenius theorem provides a relatively simple condition:
Equation (6.44) has a solution A(xy,x,,x4) if, and only if, there exists scalar functions
oty (xX1,%9,%3) and 0(x|,Xp,x3) such that

f.gl =0yf +0rg

i.e., if the Lie bracket of f and g can be expressed as a linear combination of f and g.
This condition is called the involutivity condition on the vector fields {f, g} .
Geometrically it means that the vector [f, g] is in the plane formed by the two vectors f
and g. Thus, the Frobenius theorem states that the set of vector fields {f, g} is
completely integrable if, and only if, it is involutive. Note that the involutivity
condition can be relatively easily checked, and therefore, the solvability of (6.44) can
be determined accordingly.

17/39



The Frobenius Theorem

Definition 6.4 A linearly independent set of vector fields {f;,f5,..., £, } on R" is
said to be completely integrable if, and only if, there exist n—m scalar functions
h(X), hy(X) , ..., h,_,(X) satisfying the system of partial differential equations

Vi f; = 0 L. h =0 (6.45)
J

where 1 <i<n-m, 1<j<m,and the gradients Vh; are linearly independent.

Definition 6.5 A linearly independent set of vector fields {f, ,f, , ..., f,. }issaidto

be involutive if, and only if, there are scalar functions O * R" — R such that

[f;, £](x) = ;aiﬂc(x) f(x) Vi (6.46)

Theorem 6.1 (Frobenius) Let £, .8, ..., £ bea set of linearly independent vector
fields. The set is completely integrable if, and only if, it is involutive.

18/39



Example (Frobenius)

Example 6.7: Consider the set of partial differential equations

oh Odh

2 - =0

x3ax1 d x,

— ﬂ—zx ﬁ-}-'x a_h:
TR FT T

The associated vector fields are {f, , f,} with

fi=Q2x; -1 0 fo=(—x; —2xy x3)7

[f. £,] = (—4x3 2 O)F

19/39



Example

. -asina_’:z_ _0_
Tr = 2 + 1 u
- 1 - - -
of -—acoswz-
adrg = |f,g] = — ——g = 0

9(x), adgg(@)] = | | T4

rank[g(x),ad¢g(x)] = 2, V « such that cosxzs # 0
span{g} is involutive
Find h such that L,h(xz) =0, and L,L¢h(x) # 0



Oh Oh

—qg = —— =0 = hisindependent of x»
ox Oxo
L¢h(x) Oh s
= ——as
rh(x 8$1a 1n o
O(L+h O(L+sh oh
LyLsh(x) = (L )g: (L ):—acosscg
ox Oxo ox1
LyLsh(x) #0in Do = {z € R*|cosxy # 0} if 51 # 0
L o

Take h(x) =21 = T(x) = L;h = o sin o




How to Perform Input-State
Linearization

e Construct the vector fields g, adg g,.... ,adg" g for the given system
¢ Check whether the controllability and involutivity conditions are satisfied

e If both are satisfied, find the first state T (the output function leading to
input-output linearization of relative degree n) from equations (6.53), i.e.,

VT, adiig=0 1=0,....,n—-2 (6.57a)

VT, adg"~1g#0 (6.57b)



How to Perform Input-State
Linearization

e Compute the state transformation z=¢(x) = (T L¢T; .. L~ 1T)!
and the input transformation (6.48), with

L¢"T,
ax) = — = (6.58a)
Ly L 1T

1

Ly Le"~1T,

(6.58b)

B(x) =



Example 6.8

Ig,+MgLsing, +k(q,—q,) =0

J:-’i;z—k("-h_f?z):u



Example 6.8

x=[q; 1 9 Eig]T

.-]fl =.;f2




Example 6.8

MgL . k k
f=[x, - 5 sinx; ——(xy —X3) X4 —(xl—x3)]T
1 ! |
1 T B 7
g=[0 00 -] 00 0 -X
S 1J
k
0 O 7 0
2 3 _ 1 k
(g, adeg, ad“¢g, ad”sg] = | 0 5 0 73
1 k
-0 —= 0
|/ VA

It has rank 4 for k>0,1J <o, Furthermore, since the vector fields {g, ad;g, aa’fzg] are
constant, they form an involutive set. Therefore, the system in (6.59) is input-state linearizable.



Example 6.8

or _| T oT et T,
olox, ox, Ox, O,
VTad tg=| I L T,

OX, OX, OX; OX,

<l O O o




Example 6.8

S L ) P
Polox, Ox, X, OX,

=0

K
N
0

VTad g = or, oI, oT, OJT,
oX, OX, OX, OX, || K
37
L O —

—>ﬂ¢0



Example 6.8

JdT, JT, oT,

=) _— = p— ]

d X, d X3 d x4

aT-l io 31=T1—x1

=[1 0 0 0]




Example 6.8

Zs :Ts = Lf2T1 — Lf (Lle) :VTzf

X

- gin x4 - x,)

=[0 1 0 O] —Msinxl—lk(xl—xg)

X

%(Xl o Xs)



Example 6.8

2, =T, = Lf3T1 =L (LfZTl) =VT,f

:{—%cosxl—lE 0 K

M k
———X, COS X, —T(x2 — X,

d

MgL

X

. k
—Tsm xl—T(xl—xs)

X

%m—xs)




Example 6.8

r, =27,

—retis, N

2 e 2
0T

T = —2f = mMgLsinxl—E(x]—x?j)
Jdx | S
oT

T4=uuff=—~Mf Xy COSX| — — (X —



Example 6.8

v—L T,
Lg LfBT1
Lg Lf3-|_1 = LgT4 =VT,0

U

oT, oT, oT, oT,

OX,  OX, OX; OX,

<l O O o




Example 6.8

Lf4T1 =L, (Lngl) =VT, T

_ "
- MgL .
fotr, o, or, ot ] | S'”Xi__(x %)
OX, OX, OX;  OX, | X,
k
I j(xl_x3)




Example 6.8

u=%(v—a(x))

MgL k k k k MgL
CDSI1+?) + F(,xl—_:.c?j)(?+j+

a(x) = MgL SIN.X, (,r22 4 cosx; )




Controller Design Based on
Input-State Linearization

21(4) =y
vz @ =370 - By 7,0 - B 7 - By 7,

7@+ B3P+ BT, D+ B, 7, +B,Z =0
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