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Chapter 1
Introduction

mples of Nonlinear Systems



Nonlinear State Model

r1 = fl(ta$1a°°°a$nau19'"9up)
T2 = fQ(taajla"'amnaula'"aup)
Ty = fn(ta$1a'"awnaula"'aup)

x; denotes the derivative of x; with respect to the time
variable ¢

u1, ug, ..., up are input variables

x1, T2, ..., T, the state variables
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z = f(t,xz,u)
y = h(t,z,u)

x IS the state, u Is the input
y 1S the output (g-dimensional vector)

Special Cases:
Linear systems:

A(t)x + B(t)u
C(t)x + D(t)u

T

Yy

Unforced state equation:

r = f(t,x)

Results from & = f(t, x,w) with u = ~(¢, x)



Autonomous System:

i = f(x)

Time-Invariant System:
& = Fl@, )
y = h(xz,u)

A time-invariant state model has a time-invariance property
with respect to shifting the initial time from ¢y to tg + a,
provided the input waveform is applied from to + a rather
than tg



Equilibrium Points

A point x = x* In the state space is said to be an
equilibrium point of & = f(¢t, x) if

x(tg) =" = z(t)=x", Vt2>tg

For the autonomous system & = f(x), the equilibrium
points are the real solutions of the equation

f(z) =0

An equilibrium point could be isolated; that is, there are no
other equilibrium points in its vicinity, or there could be a
continuum of equilibrium points



A linear system = = Ax can have an isolated equilibrium
point at x = 0 (if A is nonsingular) or a continuum of
equilibrium points in the null space of A (if A is singular)

It cannot have multiple isolated equilibrium points , for if x,
and x; are two equilibrium points, then by linearity any point
on the line ax, + (1 — ) connecting x, and x;, will be
an equilibrium point

A nonlinear state equation can have multiple isolated
equilibrium points .For example, the state equation

i?l = I, .Ci?z — —a Sin r1 — b:l?z

has equilibrium points at (z1 = nmw, x5 = 0) for
n=0,+£1,+2,---



Linearization

A common engineering practice in analyzing a nonlinear
system is to linearize it about some nominal operating point

and analyze the resulting linear model

What are the limitations of linearization?

# Since linearization is an approximation in the
neighborhood of an operating point, it can only predict
the “local” behavior of the nonlinear system in the
vicinity of that point. It cannot predict the “nonlocal” or
“global” behavior

# There are “essentially nonlinear phenomena” that can
take place only in the presence of nonlinearity



Nonlinear Phenomena
# Finite escape time

# Multiple isolated equilibrium points

#® Limit cycles

# Subharmonic, harmonic, or almost-periodic oscillations
o Chaos

# Multiple modes of behavior



Nonlinear Systems Examples

 Pendulum Equation

K :

mlO = —mgsin 0 — kl6

mg

331:9, 332:9.



r1 = I9

: g . k

ro = — —SINTx] — —IT2
[ m

Equilibrium Points:

0 = o

g . k
= — —SInxTr1 — —aI2

[ m

(nmw,0) for n =0,+1,%2,...
Nontrivial equilibrium points at (0, 0) and (=, 0)




Pendulum without friction:

Tr1 = X9
. g .
xro — — — SINnIq
Pendulum with torque input:
Tr1 = 9
: g . k
xro — — —SINIX1] — —I9

™m




Tunnel-Diode Circuit

+ |+
ve—=C E_IUR
E= — —
' 6 0:5 i v,V
dvc diy,
(/ = —_— Vr = _
¢ dt ’ L dt



ic +ip—1p =0 = ?:C:—h(ibl)—{—atz

ve — E+ R, +vp =0 = v = —x1 — Rxys + u

1
Tr1 = E [—h($1) —+ 332]
1
To = E [—:131 — Rxs + u]
Equilibrium Points:
0 = —h(x1)+ 2
0 = — L] — RQZ‘Q —|- u






Mass—Spring System

my‘|‘Ff‘|‘Fsp:F

Sources of nonlinearity:
# Nonlinear spring restoring force Fs, = g(vy)

# Static or Coulomb friction



Fsp = g(y)

g(y) = k(1 — a’y®)y, |ay| <1 (softening spring)

g(y) = k(1 + a’y?)y (hardening spring)

Fy may have components due to static, Coulomb, and
viscous friction

When the mass is at rest, there is a static friction force F
that acts parallel to the surface and is limited to +usmg
(0 < us < 1). F takes whatever value, between its limits,
to keep the mass at rest

Once motion has started, the resistive force F¢ is modeled
as a function of the sliding velocity v = g



© (@)

(a) Coulomb friction; (b) Coulomb plus linear viscous friction; (¢) static, Coulomb, and linear

viscous friction; (d) static, Coulomb, and linear viscous friction—Stribeck effect



Negative-Resistance Oscillator

-
? i | = h(v)
—C L
. Resistive
Element
Y ?:C ?:L \
a

h(0) =0, h'(0) <0

h(v) — coas v — 0o, and h(v) - —ooc asv — —oC



ic+1ip+1=0

ct 1 (s) ds + h(v) = 0
dt—|—L/_oo'vs s+ h(v) =

Differentiating with respect to ¢ and multiplying by L:

el 4oy Lh ()22 — 0
dez " Yar
T — t/\/ CL
dv dv d?v d?v
— =V CL—, — =CL——
dr dt dT2 dt?



Denote the derivative of v with respect to = by ©
b+eh'(vV)o+v=0, e=./L/C
Special case: Van der Pol equation
h(v) = —v + 30°
b—e(l—v)o+v=0
State model: 1 =v, x9 =17

Tr1 = xI9

53‘2 = —a:l—ah’(acl)a:g



Another State Model:

Change of variables:

L1

L2

T(x) = [

—h(x1) — %'132

z1

Z92

L1

\f[—%L — h(vc)]

z1 =1L, 22 = VUC
1
p— —Z9
>
— —€[Z1 — h(ZQ)]
z=T(x)
h(z;z

] , T7H(z) = [

z2

—EZ] — Eh(Zg)

|



Adaptive Control
Plant : Yp = apYp + kpu

ReferenceM odel : Ym = AmYm + Em7
u(t) = 07 (t) + O3y, (t)

a
O = — and 05 =
1 K n 2 k,

When a, and k, are unknown, we may use
u(t) = 01(8)r(t) + O2(t)yp(?)

where 64 (t) and 0, (t) are adjusted on-line



Adaptive Law (gradient algorithm):

01 = —v(Yp — Ym)T
02 = _’Y(yp — ym)ypa v >0

State Variables: e, = yp —ym, ¢1 = 01 — 07, 2 = 02 — 65
Ym = ApYm + kp(gikr T 9>2kym)
Yp = apyYp + kp(el’f' T 92?4}9)
éo = apeo + kp(01 — 07)7r + kp(O2yp — O3ym)

T— e e e e e —|— k;p[ggyp — szp]
= (ap+ kpb3)eo + kp(61 — 07)r + kp(62 — 03)yp



Closed-Loop System:

€o = Qme€o+ kqulr(t) + kpq52[eo + Ym (t)]
1 = —yeor(t)
CE’Z — —"}’60[60 + Ym (t)]



Common Nonlinearities

y 4t yt
1 kT
u 0
-1
(a) Relay (b) Saturation

yk. yu j

s

(c) Dead zone (d) Quantization



