Chapter 2
Second-Order Systems



1 = fi(x1,x2) = fi(x)

xo = fo(x1,22) = fa(x)

Let x(t) = (x1(t), x2(t)) be a solution that starts at initial
state 9 = (x10,x20). The locus in the x1—x2 plane of the
solution z(t) forall t > 0 is a curve that passes through the
point x¢. This curve is called a trajectory or orbit

The x1—x4 plane is called the sfafe plane or phase plane
The family of all trajectories is called the phase portrait

The vector field f(x) = (f1(x), f2(x)) is tangent to the
trajectory at point x because

dry  fa(x)

de1  fi(z)




Phase Portrait

« Graphical study of second order

systems K

u=+U

x1 =f1(x1, %)
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Phase portrait of a mass-spring system

Y+x=0
x(f) = x,cost

x(f) = — x ,sint

x2+5i2=x,2

(a) (b)

Figure 2.1 : A mass-spring system and its phase portrait



A major class of second-order system

X+f(x,x)=0
with x; = x and x, = X.
.;C]=.?C2

.i'z = -f(xl, Iz)



Singular Points

« Singular point: equilibrium point in the phase
plane

« Equilibrium point: a point where the system
states can stay forever

solving x = 0 for the state x, i.e., from solving
fl(xla x2):0 fz(xla-XZ):O

* Linear system: usually only one singular point
* Nonlinear system: more than one



A nonlinear second-order system

Y+05x+2x+x2=0

X=0,¥=0—2X+Xx*=0
—>x=0,-2




Phase Portrait MATLAB(1)

clear

clf Xl

Tfinal=20:; v
Xl
X2

X, = X

X,

Td=0.01; &

t=0:Td:Tfinal;

N=length(t);

X(1,1)=-2;x(2,1)=2,;

for k=2:N
X(1,k)=x(1,k-1)+Td*x(2,k-1);
X(2,k)=x(2,k-1)+Td*(-0.5*x(2,k-1)-2*x(1,k-1)-x(1,k-1)"2);

end

plot(x(1,:),x(2,:))

axis([-2 2 -2 2]);

hold on

=—0.5X, — 2X, + X/



Phase Portrait MATLAB(2)

[X1, X2] = meshgrid(-2:0.2:2, -2:0.2:2);
xldot = x2;

x2dot = -0.5*x2-2*x1-x1.72;
quiver(x1,x2,x1dot,x2dot)
xlabel('x_1")

ylabel('x_2")

v 2
X, =—0.5X, = 2X, + X
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Singular Point

* The slope of the phase trajectories
d)Cz B f2().f1, .7C2)
dxy  filxg, %)

With the functions f; and f, assumed to be single valued, there is usually a definite
value for this slope at any given point in phase plane. This implies that the phase
trajectories will not intersect. At singular points, however, the value of the slope is
0/0, i.e., the slope is indeterminate. Many trajectories may intersect at such points, as
seen from Figure 2.2. This indeterminacy of the slope accounts for the adjective
"singular".



Constructing Phase Portraits

* Analytical Method
g(xl, X9, C') =(
The first technique involves solving equations (2.1) for x; and x, as functions of
time ¢, i.e.,

x1(1) = g1(®) xo(1) = g()

and then eliminating time ¢ from these equations, leading to a functional relation in the
form of (2.6). This technique was already illustrated in Example 2.1.



Constructing Phase Portraits

* Analytical Method

The second technique, on the other hand, involves directly eliminating the time
variable, by noting that

dX2 _fl(xl, X2)
dx)  Jolxy, %)

and then solving this equation for a functional relation between x; and x,. Let us use



Mass-spring system

X+X=0
X, =X, X, =X
X =%

XZZXZ_X:_XZI.

dx, - dx

iR, > X, —=+% =0

X, ax,

—> XZ%dx1+_.'x1dx1:C—>x22+xf:x§

dx,




A satellite control system




A satellite control system

6 <0

. . do ..

6=U —>9d9=ad9=Ud6’—>0d6’=Ud9
1 ) :

—=0"=Ub+c, p X
2 u=U
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The Method of Isoclines

locus of the points with a given tangent slope.
defined to be

d.l'z _fl(xl, Iz) B
dII fz(.xl, Iz)

This is to say that points on the curve

fo(xy, xp) = otf1(xq, x5)

all have the same tangent slope .



The Method of Isoclines

 Mass-spring system

dx, -X
dx, X

=a > X +aX, =0




The Van der Pol equation

X4+ u(x*=1)x+x=0
%dx+ (x> =1)xdx + xdx =0
XdX + 2£(X* —1)%dx + xdx =0

. . _ 2 .
X%+y(x2—1)>'<+x:0—> dx: X=X 2 &
X

dx X
X

X = 5
(1—ux’)-—«a




The Van der Pol equation

o:=0




Phase Portrait MATLAB(1)

clear

clf X4+ u(x*=1Dx+x=0

mu=tL X, =X, X, =X

Tfinal=20:;

Td=0.01; )'(1 — X2

t=0:Td:Tfinal;

N=length(y); X, = — (X —1)X, — X,

X(1,1)=-0.1;x(2,1)=0.1;

for k=2:N
X(1,k)=x(1,k-1)+Td*x(2,k-1);
X(2,k)=x(2,k-1)+Td*(-mu*(x(1,k-1)"2-1)*x(2,k-1)-x(1,k-1));

end

plot(x(1,:),x(2,:))

axis([-3 3 -3 3]);

hold on



Phase Portrait MATLAB(2)

[x1, x2] = meshgrid(-3:0.2:3, -3:0.2:3);

xldot = x2;

x2dot = -mu*(x1"2-1)*x2-x1,;
quiver(x1,x2,x1dot,x2dot)
xlabel('x_1")

ylabel('x_2")

X4+ (X =1)x+x=0
X, =X, X, =X
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Phase Plane Analysis of Linear Systems

« Linear 2" order system
J.Cl = axq +b X9

.;Cz = C)Cl + d%z

X = AX



Linear 29 Order System

X = AX = X(t) = e x(0)
z=J.z,J :Jordan form of A
A=MJ M™

z(t) =e’"z(0)



Linear 2" Order System

] __21 01l k
r'_O /12_’_0 A
_a+j,8 0

0 a- 1B




Case 1. Both eigenvalues are real: A1 # Ay # 0
M = [vy, va]
v1 & vo are the real eigenvectors associated with A1 & Ao
zZ1 = Az1, Z9 = A9 z9

z1 (t) = zloeAlt, Zz(t) — Zz9p€

Aot
Zo = 02?2/A1, c = 220/(Z10)A2/)\1

The shape of the phase portrait depends on the signs of A4
and \o



A2 <A1 <0

et and e*2t tend to zero as t — oo

e*2t tends to zero faster than e*?

Call X\, the fast eigenvalue (v5 the fast eigenvector) and A4
the slow eigenvalue (v the slow eigenvector)

The trajectory tends to the origin along the curve
z9 — CZ?Q/Al with AQ/Al > 1

dz A _
dza _ A2 [0a/a) 1)
dzq A1



Stable Node

A2 > A1 >0

Reverse arrowheads
Reverse arrowheads —> Unstable Node



Stable Node

X9 Vo

Unstable Node



Ao <0< Aq

eMt 5 oo, while et — 0ast — oo

Call A5 the stable eigenvalue (vo the stable eigenvector)
and A\ the unstable eigenvalue (v{ the unstable
eigenvector)

z9 = Czi\z/)\l, Az/Al <0

Saddle
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Phase Portrait of a Saddle Point



Case 2. Complex eigenvalues: A; 2 = a 4

z1 = az1 — Bz2, 22 = Bz

r:\/z%+z§, Q:tan_l

=9

+ azo

(=)

r(t) = roe® and 6(t) = g + Bt

a<0 = r(t) —0ast — occ

a>0 = r(t) >occast — oo

a=0 = r(t)=roVt
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Limit Cycles

Oscillation: A system oscillates when it has a nontrivial
periodic solution

x(t+T)=x(t), Vt>0

Linear (Harmonic) Oscillator:

. {0 —,@}
z = =z
3 0

zl(t) =N COS(/@t -+ 90), Z9 (t) = 70 Sin(,@t -+ 90)

o = \/Z%(O) + 22(0), fp = tan



The linear oscillation is not practical because

# |t is not structurally stable. Infinitesimally small
perturbations may change the type of the equilibrium
point to a stable focus (decaying oscillation) or unstable

focus (growing oscillation)

# The amplitude of oscillation depends on the initial
conditions

The same problems exist with oscillation of nonlinear
systems due to a center equilibrium point (e.g., pendulum
without friction)



Limit Cycles:

Example: Negative Resistance Oscillator

Resistive
Element

i = h(v)

()




r1 = x9

:f:‘g = —:131—8’2,,(:131)332

There is a unique equilibrium point at the origin

_8f 0 1

Ox x=0

A

 —1 —eh/(0) |

A+ eh/(0)A+1=0
h'(0) < 0 = Unstable Focus or Unstable Node



Energy Analysis:

E =

) 1
ve =x1 and i = —h(x1) — —x2
5

E = %C{x% + [eh(x1) + 33‘2]2}

C{lei‘l + [€h(:131) + :232] [€h’(331):i71 + :23‘2]}

0{331332 + [€h($1) + :132] [€hl(:131)332 — 1 — €h'(m1)w2]}
C[$1$2 — €Q&'1h(aj‘1) — 3313:‘2]

—€C’w1h($1)



E — —€Csc1h(::c1)



Example: Van der Pol Oscillator

Tr1 = xT9

ro = —x1+ 8(1 — :l?%)a?z




Stable Limit Cycle

Unstable Limit Cycle



