Chapter 3
Fundamental Properties



Euclidean Space

The set of all n-dimensional vectors = = [z1,...,2,]7, where z1,...,, are
real numbers, defines the n-dimensional Euclidean space denoted by R™. The one-
dimensional Euclidean space consists of all real numbers and is denoted by R.
Vectors in R™ can be added by adding their corresponding components. They can
be multiplied by a scalar by multiplying each component by the scalar. The inner
product of two vectors z and y is 27y = 2?21 TiYi-



Vector and Matrix Norms

The norm ||z|| of a vector z is a real-valued function with the properties
e |[z]| > 0 for all x € R, with ||lz|| = 0 if and only if z = 0.

o flo+ gl < lloll + Iyl for all 2, y € R

o llaz| = |of |lz[, for all « € R and « € R™.

The second property is the triangle inequality. We consider the class of p-norms
defined by

b

Izll, = (Jz1|P + - + [zn )P, 1<p< oo

and

[#llo0 = max o

The three most commonly used norms are ||z||1, |||, and the Euclidean norm

lzllz = (Jzaf* + - - —l—llsr:q,,,[?)l/2 — (xTx)lﬁ



Matrix Norm

An m x n matrix A of real elements defines a linear mapping y = Ax from R"
into R™. The induced p-norm of A is defined by

A
1Al = sup A%l _ oy 1 4g,
x#0 ”m”p |lz||p=1

which for p =1, 2, and oo is given by

n
1/2
/ , and HAHoo=m?XZ|aij|

7=1

Al = m?XZ laiil, 1 Allz = [Amax(AT A)]
=1 :

where Amax(AT A) is the maximum eigenvalue of AT A. Some useful properties of
induced matrix norms for real matrices A and B of dimensions m X n and n x £,
respectively, are as follows:

< [[Allz < vm [ Alloo, <[ All2 < vn [|A]}x

1 1
— ||A 00 — A
1Allz < VAl [|Alless  [1AB]lp < || Allp | Bll




Convergence of Sequences: A sequence of vectors g, 21, ..., Tk, ... in R®,
denoted by {xz\}, is said to converge to a limit vector x if

|z —z|| — 0 as k — oo
which is equivalent to saving that, given any € > 0, there is an integer /N such that

lzk — 2| <&, YE>N



Sets: A subset S C R™ is said to be open if, for every vector £ € S, one can
find an e-neighborhood of x

N(z,e)={z€ R" | ||z — z|| < &}

such that N(z,g) C S. A set S is closed if and only if its complement in R" is
open. Equivalently, S is closed if and only if every convergent sequence {z} with
elements in S converges to a point in S. A set S is bounded if there is r > 0 such
that ||z|| <r forall x € S. A set S is compact if it is closed and bounded. A point
p is a boundary point of a set S if every neighborhood of p contains at least one
point of S and one point not belonging to S. The set of all boundary points of S,
denoted by 085, is called the boundary of S. A closed set contains all its boundary
points. An open set contains none of its boundary points. The interior of a set S is
S — O8S. An open set is equal to its interior. The closure of a set S, denoted by S,
is the union of S and its boundary. A closed set is equal to its closure. An open set
S is connected if every pair of points in S can be joined by an arc lying in S. A set
S is called a region if it is the union of an open connected set with some, none, or
all of its boundary points. If none of the boundary points are included, the region
is called an open region or domain. A set S is convez if, for every z,y € S and
every real number 6, 0 < 6 < 1, the point fz + (1 — )y € S. If x € X C R" and
y €Y C R™, we say that (z,y) belongs to the product set X x Y C R" x R™.



Continuous Functions: A function f mapping a set S; into a set .55 is denoted
by f: 51 — S2. A function f: R™ — R™ is said to be continuous at a point z if
f(zr) — f(x) whenever x — z. Equivalently, f is continuous at z if, given £ > 0,
there is 6 > 0 such that

lz—yll < 6= 1f@@) ~ FW)l <

The symbol “=" reads “implies.” A function f is continuous on a set S if it is
continuous at every point of S, and it is uniformly continuous on S if, given £ > 0
there is 6 > 0 (dependent only on ¢) such that the inequality holds for all z, y € S.
Note that uniform continuity is defined on a set, while continuity is defined at a
point. For uniform continuity, the same constant 6 works for all points in the set.



Differentiable functions: A function f: R — R is said to be differentiable at
x if the limit

/ . f(.‘l?—i—h)—-f(.l?)
flz) = lim h |
exists. The limit f’(x) is called the derivative of f at z. A function f : R™ — R™ is
said to be continuously differentiable at a point z if the partial derivatives 9f;/0x;
exist and are continuous at zp for 1 <i < m,1 < j < n. A function f is continuously
differentiable on a set S if it is continuously differentiable at every point of S. For
a continuously differentiable function f: R™ — R, the row vector 0f/0z is defined

by
of _ |9f of
dr |0z, ' Oz,
The gradient vector, denoted by V f(z), is
_[or]”
Vi) = [%}

For a continuously differentiable function f : R® — R™, the Jacobian matrix
[0f /O] is an m X n matrix whose element in the ith row and jth column is 8f;/0z;.



Existence and Uniqueness of Solutions
= f(t,x)

f(t, x) is piecewise continuous in ¢ and locally Lipschitz in
a over the domain of interest

f(t, x) is piecewise continuous in ¢t on an interval J C R if
for every bounded subinterval Jy C J, f Is continuous in ¢
for all t € Jy, except, possibly, at a finite number of points
where f may have finite-jump discontinuities

f(t, ) is locally Lipschitz in « at a point x¢ if there is a
neighborhood N (xg,7) = {x € R" | ||x — x¢]|| < r}
where f(t, ) satisfies the Lipschitz condition

| f(t,x) — f(t,y)|| < Lllz—yl|, L>0



A function f(t, x) is locally Lipschitz in 2 on a domain
(open and connected set) D C R™ if it is locally Lipschitz at
every point xg € D

When n = 1 and f depends only on x

|f(y) — f(=)|

<L
ly — x|

On a plot of f(x) versus «x, a straight line joining any two
points of f(x) cannot have a slope whose absolute value is
greater than L

Any function f(x) that has infinite slope at some point is
not locally Lipschitz at that point



A discontinuous function is not locally Lipschitz at the points
of discontinuity

The function f(x) = ='/3 is not locally Lipschitz at = 0
since

() =(1/3)z7%? w00 @a xz—0

On the other hand, if f/(x) is continuous at a point x( then
f (x) is locally Lipschitz at the same point because
continuity of f’(x) ensures that | f’(x)| is bounded by a
constant k£ in a neighborhood of x¢ ; which implies that

f (x) satisfies the Lipschitz condition L = k

More generally, if fort € J C R and x in a domain
D C R", f(t,x) and its partial derivatives 9 f;/0x; are
continuous, then f(t, x) is locally Lipschitz in  on D



Lemma: Let f(t, ) be piecewise continuous in ¢ and
locally Lipschitz in « at x¢, for all t € [tg, t1]. Then, there is
0 > 0 such that the state equation & = f(t, x), with

x(to) = xo, has a unique solution over [tg, tg + J]

Without the local Lipschitz condition, we cannot ensure
unigueness of the solution. For example, & = x1/3 has
z(t) = (2t/3)3/2 and x(t) = 0 as two different solutions
when the initial state is (0) = 0

The lemma is a local result because it guarantees existence
and uniqueness of the solution over an interval [tg, to + 9],
but this interval might not include a given interval [tg, ¢1].
Indeed the solution may cease to exist after some time



Example:
2

Tr = —x
f(x) = —x? is locally Lipschitz for all z
0)=-1 = a(t)=_—
S T -

x(t) - —oco as t — 1

the solution has a finite escape time att = 1

In general, if f(t,x) is locally Lipschitz over a domain D
and the solution of & = f(t, ) has a finite escape time ¢.,
then the solution «(t) must leave every compact (closed
and bounded) subsetof D as t — t,



Global Existence and Uniqueness
A function f(t, x) is globally Lipschitz in « if

[f(t,x) — f(t,y)|| < Lfjz —y|

forall z,y € R™ with the same Lipschitz constant L

If £(t,x) and its partial derivatives 0 f;/0x; are continuous
forall z € R™, then f(t,x) is globally Lipschitz in « if and
only if the partial derivatives 9 f; /0x; are globally bounded,
uniformly in ¢

f(z) = —x? is locally Lipschitz for all 22 but not globally
Lipschitz because f/(x) = —2« is not globally bounded



Lemma: Let f(t,«) be piecewise continuous in ¢t and
globally Lipschitz in « for all t € [to, t1]. Then, the state
equation & = f(t, x), with z(tg) = x¢, has a unique
solution over [to, t1]

The global Lipschitz condition is satisfied for linear systems
of the form

&= A(t)z + g(t)
but it is a restrictive condition for general nonlinear systems



Lemma: Let f(t,x) be piecewise continuous in t and
locally Lipschitz in x for all t > t¢ and all x in a domain

D C R"™. Let W be a compact subset of D, and suppose
that every solution of

T = f(ta$)a $(t0) — Lo

with g € W lies entirely in W. Then, there is a unique
solution that is defined for all t > ¢



Example:

T = —x°5 = f(x)
f(x) is locally Lipschitz on R, but not globally Lipschitz
because f/(z) = —3a2 is not globally bounded

If, at any instant of time, x(t) is positive, the derivative a:(t)
will be negative. Similarly, if =(t) is negative, the derivative
a(t) will be positive

Therefore, starting from any initial condition (0) = a, the
solution cannot leave the compact set {z € R | || < |al|}

Thus, the equation has a unique solutionforallt > 0



