Chapter 4
Lyapunov Stability



& = f(z)
f is locally Lipschitz over a domain D C R"™
Suppose & € D is an equilibrium point; that is, f(x) = 0
Characterize and study the stability of &

For convenience, we state all definitions and theorems for
the case when the equilibrium point is at the origin of R";
that is, £ = 0. No loss of generality

Yy=x — T

=i = f(z) = fly+2) = g(y), whereg(0) =0



Definition: The equilibrium pointx = 0 of & = f(x) is

o stable if foreache > 0thereis § > 0 (dependent on ¢)
such that

|z(0)]| <& = [[z(t)|| <e, VE=>0
® unstable if it is not stable

# asymptotically stable if it is stable and 6 can be chosen
such that

|z(0)]| < 6 = tlim x(t) =0



First-Order Systems (n = 1)

The behavior of x(t) in the neighborhood of the origin can
be determined by examining the sign of f(x)

The e—9 requirement for stability is violated if  f(x) > 0 on
either side of the origin

f(x) / f(x) / f(x)
/ . . / \

Unstable Unstable Unstable




The origin is stable if and only if z f(x) < 0 in some
neighborhood of the origin

f(x) f(x) f(x)

Stable Stable Stable



The origin is asymptotically stable if and only if z f(x) < 0
INn some neighborhood of the origin

\ N

f(x) ()

N

(a) (b)

Asymptotically Stable Globally Asymptotically Stable



Definition: Let the origin be an asymptotically stable
equilibrium point of the system & = f(x), where f is a
locally Lipschitz function defined over a domain D C R"
(0 € D)

#® The region of attraction (also called region of
asymptotic stability, domain of attraction, or basin) is the
set of all points ¢ In D such that the solution of

= f(x), x(0)=xo

Is defined for all ¢ > 0 and converges to the origin as ¢
tends to infinity

#® The origin is said to be globally asymptotically stable if
the region of attraction is the whole space R"



Example: Pendulum Without Friction




Example: Pendulum With Friction

x'=y
y'=-10sin(x) -y




Linear Time-Invariant Systems

P~'AP = J = block diag[Jy, Ja, . ..

r = Ax

x(t) = exp(At)x(0)

A 1 o ... ... 0
0 A; 1 O ... O
0

.

0 0 X\;

mxXm



exp(At) = Pexp(Jt)P~ 1 = Z Z tF =1 exp(\it) Ry,
1=1 k=1

m; 1S the order of the Jordan block .J;

Re[\;] < 0 Vi < Asymptotically Stable

Re[\;] > 0 forsome: = Unstable
Re[A\;] <0 V& m; > 1for Re[\;] =0 = Unstable
Re[\;] <0 Vi& m; =1for Re[\;] =0 = Stable

If an n X n matrix A has a repeated eigenvalue \; of
algebraic multiplicity g;, then the Jordan blocks of A\; have
order one if and only if rank(A — A\;I) = n — q;



Theorem: The equilibrium point = 0 of x = Ax Is stable if
and only if all eigenvalues of A satisfy Re[A;] < 0 and for
every eigenvalue with Re[\;| = 0 and algebraic multiplicity
q; > 2, rank(A — \;I) = n — q;, where n is the dimension
of . The equilibrium point = = 0 is globally asymptotically
stable if and only if all eigenvalues of A satisfy Re[\;] < 0

When all eigenvalues of A satisfy Re[\;] < 0, A is called a
Hurwitz matrix

When the origin of a linear system is asymptotically stable,
its solution satisfies the inequality

lz(t)|| < E[lz(0)]le™™, V>0
E>1,A>0



Exponential Stability

Definition: The equilibrium point x = 0 of & = f(x) is said
to be exponentially stable if

lz(®) ]| < kllz(0)][e™, Vit >0
k>1, A > 0,forall [|[z(0)] < ¢

It is said to be globally exponentially stable if the inequality
is satisfied for any initial state «(0)

Exponential Stability = Asymptotic Stability



Example

r = —x3

The origin is asymptotically stable

x(0)

©(t) = V14 2tz2(0)

x(t) does not satisfy |x(t)| < ke~**|x(0)| because

2\t
€ 2

<
1+ 2tx?(0) —

z(t)] < ke™M|2(0)| =

62}\15

Impossible because lim = o0
t—oo 1 + 2tx2(0)




Linearization
&= f(z), f(0)=0

f is continuously differentiable over D = {||z|| < r}

Iw) = 32 (@)

h(o) = f(ox) for 0 <o <1
h' (o) = J(ox)x

1

h(1) = h(0) = | W(@)do,  h(0) = £(0) =0

0

-1
f(x) = /0 J(ox) do x



1
f(x) = '/0 J(ox) do x
Set A = J(0) and add and subtract Ax
1
f(x) = [A+ G(x)]x, where G(x) = '/0 [J(ocx)—J(0)] do

G(x) — 0 as ¢ — 0

This suggests that in a small neighborhood of the origin we
can approximate the nonlinear system & = f(x) by its
linearization about the origin z = Ax



Theorem:

# The origin is exponentially stable if and only if
Re[A;] < 0 for all eigenvalues of A

# The origin is unstable if Re[A;] > 0 for some ¢

Linearization fails when Re[A;] < 0 for all z, with
Re[\;] = 0 for some ¢

Example

+ = ax®

_ oF

A= L
833 =0

— 3a332|$:0 =0

Stable if a = 0; Asymp stable if a < 0; Unstable if a > 0
When a < 0, the origin is not exponentially stable



Example: The Pendulum

MR20+k0+ MgRsin®=0

x1=9,x2=9

.Il =I2

: k 2 5
MR

X=0, sinx;=0

(0 [2r], 0) and (7 [2x], O).




Example : The Pendulum(1)

X, =X,
. b g .
X, _MR2X2_ESIHX1
of, of, of, g of, b
=0,—=L,—==—-=cosX,—=~=———=
6x OX, OX, R OX, MR
0 |
X =0,X, =0,A= g b
R MR? |
S + s+ -0




Example: The Pendulum(2)

0 ]
Xl=7Z',X2=O,A= g b
'R  MR?]

s* + : s—3J _¢

MR* R

Z, =X —X =X —7,2, =X,
Z, =1,

b Z, —gsin(z1 +77)

" MR?? R

L, =



Let V' (x) be a continuously differentiable function defined in
a domain D C R™; 0 € D. The derivative of V along the
trajectories of & = f(x) is

. "oV oV
V(z) = T; = fi(x)
;6.’13@' ;8,’1’;@-
fi(x)
_ {BV v 1% } f2(x)
Oxr1’ Oz’ ' Oxn
 fala)
oV
= ()



x(t)

=¥




If ¢(t; x) is the solution of & = f(x) that starts at initial
state x at time ¢t = 0, then

V(e) = GVt

If V() is negative, V' will decrease along the solution of

i = f(z)

If V(x) is positive, V will increase along the solution of

i = f(z)



Lyapunov’s Theorem:
® [fthereis V(x) such that

V() =0and V(z) >0, Vaxec D/{0}

V(iz) <0, Ve D
then the origin is a stable

® Moreover, if
V(z) <0, Ve D/{0}

then the origin is asymptotically stable



# Furthermore, if V() > 0,V x # 0,
||| = 00 = V(x) — o

and V(x) < 0,V x # 0, then the origin is globally
asymptotically stable

Proot 0<r<e By ={[e| <r}

a = min V(x) >0

2l =r
0<B<K

Qs ={x € B, |V(z) < B}

o] <6 = V(2) <3




Solutions starting in Q5 stay in Q25 because V(z) < 0in Q
x(0) € Bs = x(0) € Qg = x(t) € Qg = x(t) € B,

[z(0)[| <o = lxz(@®)|| <r <e, VE=>0
= The origin is stable

Now suppose V (z) < 0V = € D/{0}. V (x(t) is
monotonically decreasing and V (x(t)) > 0

tlim V(xz(t)) =c>0
tlim V(z(t)) =c >0 Showthatec =0

Suppose ¢ > 0. By continuity of V(x), there is d > 0 such
that B; C Q.. Then, x(t) lies outside B, forallt > 0



= — max V(x
K d<||z||<r (@)

V(z(t)) = V(z(0)) +/(; V(z(r)) dr <V (2(0)) —~t

This inequality contradicts the assumption ¢ > 0
= The origin is asymptotically stable

The condition ||z|| — o0 = V(x) — oo implies that the
set. = {x € R" | V(x) < ¢} is compact for every ¢ > 0.
This Is so because for any ¢ > 0, there is » > 0 such that
V(x) > cwhenever ||z|| > r. Thus, Q. C B,. All solutions
starting 2. will converge to the origin. For any point

p € R™, choosing ¢ = V (p) ensures that p € Q.

— The origin is globally asymptotically stable



bl

Figure 4.4: Lyapunov surfaces for V(z) = 22 /(1 + z2) + z2.
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Terminology

V() =0, V() >0forz #0

Positive semidefinite

V(0) =0, V(x) > 0forz # 0

Positive definite

Negative semidefinite

)

)
V() =0, V() <0forxz #0
V(0) =0, V(z) <O0forz £ 0

Negative definite

Radially unbounded

Lyapunov’ Theorem: The origin is stable if there is a
continuously differentiable positive definite function V (x) so
that V' (x) is negative semidefinite, and it is asymptotically

stable if V (x) is negative definite. It is globally
asymptotically stable if the conditions for asymptotic
stability hold globally and V' () is radially unbounded



A continuously differentiable function V' (x) satisfying the
conditions for stability is called a Lyapunov function. The

surface V (x) = ¢, for some ¢ > 0, is called a Lyapunov
surface or a level surface




Quadratic Forms

V(z) = 2! Px = Z Z pijrirj, P =P’
i=1j=1
Amin(P)||z]|* < @' Pz < Amax(P)||2||?
P > 0 (Positive semidefinite) if and only if A;(P) > 0 Vz
P > 0 (Positive definite) if and only if X\;(P) > 0 V2

V (x) is positive definite if and only if P is positive definite
V (x) is positive semidefinite if and only if P is positive
semidefinite

P > 0 if and only if all the leading principal minors of P are
positive



Linear Systems
r = Ax

Vix) = r! Pz, P=prP'>0

If Q > 0, then A is Hurwitz

Or choose Q@ > 0 and solve the Lyapunov equation
PA+ ATP=—-Q

If P > 0, then A is Hurwitz

Matlab: P = lyap(A’, Q)



Theorem A matrix A is Hurwitz if and only if for any

Q = Q' > o0thereis P = P1 > 0 that satisfies the
Lyapunov equation

PA+ AP =—-Q

Moreover, if A Is Hurwitz, then P is the unique solution

ldea of the proof: Sufficiency follows from Lyapunov’s
theorem. Necessity is shown by verifying that

P = /‘OO exp(A1t)Q exp(At) dt
J O

IS positive definite and satisfies the Lyapunov equation



Linearization
&= f(z) =[A+ G(z)]x
G(x) -0 as ¢ — 0

Suppose A is Hurwitz. Choose Q = QT > 0 and solve the
Lyapunov equation PA + ATP = —Q for P. Use
V (x) = ! Px as a Lyapunov function candidate for
&= f(x)
Vie) = 2l'Pf(x) + fI'(z)Px
T P[A 4+ G(z)]xz + 2T [AT + GT (2)|Px
z'(PA+ ATP)x + 22T PG (x)x
= —z''Qx + 22T PG(x)x



V(z) < —2"'Qz 4 2||P|| ||G()| |l=]®
For any v > 0, there exists » > 0 such that

[G(@)]| <, V]| <7

z' Qr > Amin(Q)[1z[* & —2'Qx < —Amin(Q)||z|?

V(z) < —[Amin(Q) — 27[|P|]l|z||?, V |lz|| <
Choose

)\min(Q)
2(| P

g -

V (x) = = Pz is a Lyapunov function for & = f(x)



Example

noqlinear
m¥ +bxlxl+k,x+k;x3=0 spring and

damper m

NN

L]

X

Z 7

I o, ¢ 1 .. 1 1
V(x)=§mx2+ja(kax+k1x3)dx=§mx2+§k{}x2+zk1x4

e zero energy corresponds to the equilibrium point (x = 0, x = 0)
e asymptotic stability implies the convergence of mechanical energy to zero
e instability is related to the growth of mechanical energy

V(x) = mx¥ + (k,x + ky x3) k= X (-=bxlxl) = -blxI3



Example:
& = —g(z)
g(0) =0; zg(x) >0, VYV #0 and = € (—a,a)

V(x) = /0 g9(y) dy
: oV
V($) — %[—g(az)] — _92(93) <0,Vze (_aaa)a x # 0
The origin is asymptotically stable

If zg(x) > 0 for all  # 0, use

V(z) = 52° + /(;mg(y) dy



V(z) = 32° + /: g(y) dy

IS positive definite for all  and radially unbounded since
V(x) > %:132

V(z) = —zg(xz) — g*(x) <0, Va#0

The origin is globally asymptotically stable



Example: Pendulum equation without friction

r{1 = T9

Tro =— — aSlnTq

V(x) = a(l —cosxq) + %333

V' (0) = 0 and V (x) is positive definite over the domain
—2m < x1 < 27

V(x) = axqsinxq + x2x2 = axgsinxy — axgsinxy = 0

The origin is stable

Since V (x) = 0, the origin is not asymptotically stable



Example: Pendulum equation with friction

3.32 = —aQa Siﬂ r1 — b,’_]_’,‘2

1
V(z) = a(l — cosxq) + 5333

V ) — ai‘l SiIIQZ‘]_ —|— 332;].32 —_— — b$2
2

The origin is stable

V (x) is not negative definite because V () = 0 for zo = 0
Irrespective of the value of =



The conditions of Lyapunov’s theorem are only sufficient.
Failure of a Lyapunov function candidate to satisfy the
conditions for stability or asymptotic stability does not mean
that the equilibrium point is not stable or asymptotically
stable. It only means that such stability property cannot be
established by using this Lyapunov function candidate

Try
Vi) = %:BTPSB + a(1 — cos xq)
X
— %[331 9] P plz} { ! + a(l — cosxy)
P12 P22 L2

p11 > 0, p11pa2 — piy > 0



V(QS‘) — (pllzcl + p12x2 + asin 331) o
+ (p12x1 + p22x2) (—asinxy — bxa)
a(l — P22)332 sin 1 — api2 Sin 1

+ (p11 — p12b) T122 + (P12 — P22b) 5
p22 =1, p11=0bpiz2 = 0<p12<b, Take pj2 =b/2
V(LB) = — %abwl sinxq — %bﬂi‘%
D={zcR |z <)

V (x) is positive definite and V (x) is negative definite over D
The origin is asymptotically stable



