Chapter 4
Lyapunov Stability

The Invariance Principle

Time Varying Systems



Example: Pendulum equation with friction
r{ = T9

r9 = — asinxi — bxo

1
V(x) =a(l —cosxy) + 5:1:%

V(x) = axqsinxq + xoty = — bx?
2

The origin is stable. V' (x) is not negative definite because
V(.cc) = 0 for xo = 0 irrespective of the value of x4

However, near the origin, the solution cannot stay
identically in the set {x2 = 0}



Definitions: Let «(t) be a solution of & = f(x)

A point p is said to be a positive limit point of x(t) if there is
a sequence {t, }, with lim,, . t,, = oo, such that
x(t,) — pasn — oo

The set of all positive limit points of x(t) is called the
positive limit set of =(t); denoted by LT

If (t) approaches an asymptotically stable equilibrium
point Z, then Z is the positive limit point of x(¢) and L™ = x

A stable limit cycle is the positive limit set of every solution
starting sufficiently near the limit cycle



A set M is an invariant set with respectto @ = f(x) if
r(0)eM = z(t) e M, Vte R

Examples:
# Equilibrium points

# Limit Cycles

A set M is a positively invariant set with respect to

= f(x)if
z(0) € M = z(t) € M, Vt>0

Example: The set Q. = {V (z) < ¢} with V(z) < 0in Q.



The distance from a point p to a set M Is defined by

dist(p, M) = inf —
ist(p, M) = inf |Ip — x|

x(t) approaches a set M as t approaches infinity, if for
each e > 0thereis T > 0 such that

dist(xz(t), M) <e, Vt>T

Example: every solution x(t) starting sufficiently near a
stable limit cycle approaches the limit cycle as t — oo

Notice, however, that «(t) does converge to any specific
point on the limit cycle



Lemma: If a solution =(t) of & = f(«) is bounded and

belongs to D for t > 0, then its positive limit set LT is a
nonempty, compact, invariant set. Moreover, x(t)

approaches LT as t — oo

LaSalle’s theorem: Let f(x) be a locally Lipschitz function
defined over a domain D C R™ and 2 C D be a compact
set that is positively invariant with respectto @ = f(x). Let
V (x) be a continuously differentiable function defined over

D such that V(z) < 0in Q. Let E be the set of all points in

Q where V() = 0, and M be the largest invariant set in E.
Then every solution starting in £2 approaches M ast — oo
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V(x)=%mi2+j:(kax+k1x3)dx - %m.ifz+%kox2+%k1x4

e zero energy corresponds to the equilibrium point (x =0, x = 0)
e asymptotic stability implies the convergence of mechanical energy to zero
e instability is related to the growth of mechanical energy

V(x) = mx¥ + (k,x + ky x3) k= % (-=bx|xl) = =blxI3



E:V(X)=-b[X =0=x=0
M : (X, X) = (0,0)

 Assume M contains a point with a nonzero
position x, then the acceleration at that

oint Is
P X = —ﬁx K x> # ()
m - m
e This implies that the trajectory will move

out of E. Not invariant. Contradiction!



Theorem: Let f(x) be a locally Lipschitz function defined
overadomain D C R"; 0 € D. Let V(x) be a continuously
differentiable positive definite function defined over D such

that Vi(z) < 0inD.lLetS = {x € D|V(x) = 0}

# [f no solution can stay identically in S, other than the
trivial solution x(t) = 0, then the origin is asymptotically
stable

# Moreover, if I' C D is compact and positively invariant,
then it is a subset of the region of attraction

# Furthermore, if D = R™ and V (x) is radially
unbounded, then the origin is globally asymptotically
stable



Example:
1 = I3
2o = —hi(x1) — ha(x2)

hi(0) =0, yh;(y) >0, for0 < |y| < a
V (x) :/0 hi(y) dy + %azg
D={-a<z1<a, —a<xz<a}
V(SE‘) — hl($1)$2—|—332[—h1(331)—hz(aj‘z)] — —:Bzhz(ﬂ:‘z) <0

V(33):0 = xha(x2) =0 = x2 =0
S={x € D|xy =0}



r1 = X3, xg = —hi(x1)— ha(x2)

x2(t) =0 = a2(t) = 0= hi(x1(t)) = 0= xz1(t) =0
The only solution that can stay identically in S'is (t) = 0

Thus, the origin is asymptotically stable
Suppose a = oo and [ h1(z) dz — oo as |y| — oo

Then, D = R*and V(z) = [, h1(y) dy + 523 is radially
unbounded. S = {x € R? | zo = 0} and the only solution
that can stay identically in S'is z(t) = 0

The origin is globally asymptotically stable



Example: m-link Robot Manipulator

Load

Two-link Robot Manipulator



M(q)4+ C(q,q4)qg + Dqg+ g(q) = u
g IS an m-dimensional vector of joint positions
u IS an m-dimensional control (torque) inputs
M = M™T > 0is the inertia matrix
C(q, q)q accounts for centrifugal and Coriolis forces
(M —2C)T = —(M - 20)
D¢ accounts for viscous damping; D = D! >0
g(q) accounts for gravity forces; g(q) = [0P(q)/dq]*

P(q) is the total potential energy of the links due to gravity



Investigate the use of the (PD plus gravity compensation)
control law

u=g9g(q) —Kp(g—¢q") — Kagq

to stabilize the robot at a desired position ¢*, where K, and
K4 are symmetric positive definite matrices

e=q—q°, e=qg

Mé M §
—Cq—Dq—g(q) +u
—Cq—Dqg—Ky(g—q*) —Kgqq

= —Ce—De—-—Kpye—Kge



Mé=-Cé—Dé—K,e—Kgé
V = 32¢"M(q)é + 1" Kpe

= eéTMé+ zeTMé + eTKpé

= —eél'Cé—éTDé — eT'Kpe — el K4é
+ seTMeé + eTKpé

sel' (M —20C)é — el (K4 + D)é

= —¢'(Kg+D)ée <0



(K4 + D) is positive definite
V=-¢(Kqg+De=0= é=0
Mé=—-Cé—-—Dée—Ky,e—Kyé

é(t) =0 = €é(t) =0 = Kpe(t) =0 = e(t) =0

By LaSalle’s theorem the origin (e = 0, é = 0) is globally
asymptotically stable



Converse Lyapunov Theorem—Exponential Stability

Let x = 0 be an exponentially stable equilibrium point for
the system & = f(x), where f is continuously differentiable
on D = {||x|| < r}. Let k, A, and r¢ be positive constants

with o < r/k such that
lz(t) ]| < K[|z (0)][e™, V¥ @(0) € Do, V't >0

where Dy = {||z|| < ro}. Then, there is a continuously
differentiable function V' (x) that satisfies the inequalities



ci|lz)|?* < V(z) < co|z|?

oV
- f(@) < —eslla|®

o | < called

for all z € Dg, with positive constants cq, cs, c3, and c4
Moreover, if f is continuously differentiable for all «, globally
Lipschitz, and the origin is globally exponentially stable,
then V(x) is defined and satisfies the aforementioned
inequalities for all x € R"



Example: Consider the system @ = f(x) where f is
continuously differentiable in the neighborhood of the origin
and f(0) = 0. Show that the origin is exponentially stable

only if A = [90f/0x](0) is Hurwitz
f(x) = Ax + G(x)x, G(x) - 0asx — 0
Given any L > 0, there is »1 > 0 such that
|G(z)|| < L, V|l <m

Because the origin of & = f(«) is exponentially stable, let
V (x) be the function provided by the converse Lyapunov
theorem over the domain {||z|| < »¢}. Use V(x) as a
Lyapunov function candidate for x = Ax



Converse Lyapunov Theorem-Asymptotic Stability

Let x = 0 be an asymptotically stable equilibrium point for
x = f(x), where f is locally Lipschitz on a domain

D C R™ that contains the origin. Let R4 C D be the region
of attraction of x = 0. Then, there is a smooth, positive
definite function V' (x) and a continuous, positive definite
function W (x), both defined for all x € R4, such that

V() > occasx — IRy

8—Vf(a:) < —W(x), Va & Ry
Ox

and for any ¢ > 0, {V (x) < ¢} is a compact subset of R4
When R4 = R", V() is radially unbounded



Time-varying Systems
= f(t,x)

f(t, x) is piecewise continuous in t and locally Lipschitz in
xforallt > 0andall x € D. The origin is an equilibrium
pointatt = 0 if

f(t,0) =0, YVt >0
While the solution of the autonomous system
= f(x), x(to) = xo
depends only on (¢t — tg), the solution of
= f(t,x), x(to) = =g

may depend on both ¢ and ¢g



Comparison Functions

# A scalar continuous function «(r), defined for » € [0, a)
Is said to belong to class KC if it is strictly increasing and
«(0) = 0. It is said to belong to class K if it defined
forall » > 0and a(r) — oo as r — oo

# A scalar continuous function 3(r, s), defined for
r € [0,a) and s € [0, o0) is said to belong to class KL
if, for each fixed s, the mapping 3(r, s) belongs to class
IC with respect to » and, for each fixed », the mapping
B(r, s) is decreasing with respect to s and 3(r,s) — 0
dS s — o0



Example

® «o(r) = tan~!(r) is strictly increasing since
o' (r) =1/(1 +72) > 0. It belongs to class IC, but not
to class KCo since lim, o a(r) = 7/2 < oo

® «o(r) = r°, for any positive real number ¢, is strictly
increasing since o/ (r) = cr¢~! > 0. Moreover,
lim, o a(r) = oo; thus, it belongs to class I

® ofr) = min{r,r?} is continuous, strictly increasing,
and lim, _, o a(r) = oco. Hence, it belongs to class IC



® 3(r,s) =r/(ksr + 1), for any positive real number k,
Is strictly increasing in r since

e _ - >0
or  (ksr+ 1)2

and strictly decreasing in s since

B —kr?
9s  (ksr+1)2

<0

Moreover, 3(r, s) — 0 as s — oo. Therefore, it belongs
to class KL

® (3(r,s) = re?, for any positive real number ¢, belongs
to class ICL



Definition 4.4 The equilibrium point x = 0 of (4.15) is
e stable if, for each € > 0, there is § = §(g,tg) > 0 such that

lz(to)]| <8 = |lz(@®)]| <&, Vt>to>0 (4.16)

e uniformly stable if, for each € > 0, there is § = §(¢) > 0, independent of to,
such that (4.16) is satisfied.

e unstable if it is not stable.

e asymptotically stable if it is stable and there is a positive constant ¢ = c(to)
such that z(t) — 0 as t — oo, for all ||z(to)|| < c.



Definition: The equilibrium pointx = 0 of & = f(t,x) is

# uniformly stable if there exist a class K function « and a
positive constant ¢, independent of ¢, such that

lz(@)]| < a(lz(to)l]), VE = 1t0 20, V[[z(to)|| < c

# uniformly asymptotically stable if there exist a class KL
function 3 and a positive constant ¢, independent of ¢,
such that

[z ()] < B(llx(to)ll,t—10), VT = to 2 0, V ||z(to)]| < c

# globally uniformly asymptotically stable if the foregoing
inequality is satisfied for any initial state x=(¢¢)



# exponentially stable if there exist positive constants c,
k, and X such that

lz(®)|| < Ellz(to)[[e™ 1), ¥ ||l (to) || < e

#® (globally exponentially stable if the foregoing inequality
IS satisfied for any initial state x(t)



Derivative of V

av _ .V (X(t+At), t+At) =V (x(1),t)
dt At—o0 At
— im v (X(t +AD), L +At)—V (X(t +At),t)+V (X(t +At),t)—V (X(t),’[)
At—0 At
i Y (X(t+At),t+At) -V (X(t + At),t) i Y (X(t+At),t) =V (x(t),t)

At—o0 /\t Abson At
VvV avf( )
ot OX ot




Theorem: Let the origin & = 0 be an equilibrium point for
= f(t,x) and D C R™ be a domain containing = = 0.
Suppose f(t, x) is piecewise continuous in ¢ and locally
Lipschitzinxz forallt > 0and x € D. Let V(t,x) be a
continuously differentiable function such that

(1) Wi(x) < V(t,z) < Wa(x)
, ov oV L ) <0

forallt > 0 and x € D, where Wy (x) and Wy (x) are
continuous positive definite functions on D. Then, the origin
IS uniformly stable



Theorem: Suppose the assumptions of the previous
theorem are satisfied with

o 42 f(ta) < ~Wa(a)

ot oz’ =AW
forallt > 0 and « € D, where W3 (x) is a continuous
positive definite function on D. Then, the origin is uniformly
asymptotically stable. Moreover, if » and c are chosen such
that B, = {||z|| <7} C D and ¢ < min| =, Wi(z), then
every trajectory starting in {x € B, | Wa(x) < ¢} satisfies

lz@®)]] < B(llx(to)ll,t —to), VE=>1to >0

for some class KL function 3. Finally, if D = R™ and
W1 (x) is radially unbounded, then the origin is globally
‘uniformly asymptotically stable



Theorem: Suppose the assumptions of the previous
theorem are satisfied with

killz][* < V(¢ x) < kaflz||

ov. oV

— 4+ —f(t < —k “
-+ f(tw) < —kala]

forallt > 0 and x € D, where k4, ks, k3, and a are
positive constants. Then, the origin is exponentially stable.

If the assumptions hold globally, the origin will be globally
exponentially stable.



A function V (t,x) is said to be positive semidefinite if V(t,z) > 0. It is said
to be positive definite if V (t,x) > Wi(z) for some positive definite function Wy (x),
radially unbounded if Wy (x) is so, and decrescent if V (t,x) < Wa(x). A function
V(t,z) is said to be negative definite (semidefinite) if —V (t,x) is positive definite
(semidefinite). Therefore, Theorems 4.8 and 4.9 say that the origin is uniformly
stable if there is a continuously differentiable, positive definite, decrescent function
V(t, x), whose derivative along the trajectories of the system is negative semidefinite.
It is uniformly asymptotically stable if the derivative is negative definite, and globally
uniformly asymptotically stable if the conditions for umform asymptotzc stability
hold globally with a radially unbounded V (t,x).



Example:

=—[1+g(t)]=* g(t)>0, Vt>0
V(x) = %932
V(t,a::) = —[14+gt)]z* < —2* VzcR,Vt>0

The origin is globally uniformly asymptotically stable

Example:
£y = —@7 —g(l)es

To = T — T2

0<g(t) <k and g(t) < g(t), YVt >0



V(t,z) = 23 + [1 + g(t)]=3

i +x3 < V(t,z) <z + (1+k)x3, Ve R

V(t,z) = —223 + 2z122 — [2 + 2g(t) — §(t)]x3

2 1 2g(t) — g(t) > 2+ 29(t) — g(t) > 2

V(t,x) < —2x3 4 2w129 — 2285 = — @’

The origin is globally exponentially stable
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