Chapter 6
Passivity

Passive & Stabillity
Positive Real Transfer Functions



Memoryless Functions

=

power inflow = wuy

Resistor is passive if uy > 0



y/u VM /y

(a) (b) (c)
Passive Passive Not passive

eV

y = h(t,u), h € [0, 0]
Vector case:

y:h(tau)a hT: hla h29 *t hp

power inflow = XP _w;y; = uly



Definition: y = h(t,u) IS

® passiveifuly > 0
® lossless if ul'y = 0

#® input strictly passive if uly > ul' ¢ (u) for some
function ¢ where ul'p(u) > 0,V u # 0

» output strictly passive if u’'y > y! p(y) for some
function p where yX'p(y) > 0, Vy # 0



Sector Nonlinearity: h belongs to the sector [«, 3]
(h € [, 8]) If
au? < uh(t,u) < Bu’

@) o>0 (b) <0

Also, h € (a,8], h € [a,3), h € (a, )



au’ < uh(t,u) < pu? < [h(t,u) — au][h(t,u) —Bu] < 0

Definition: A memoryless function h(t, w) is said to belong
to the sector

® [0,00] ifulh(t,u) > 0

® [Kq,o00] iful'[h(t,u) — Kqu] > 0

® [0, Ko] with Ko = KT > 0 if
Rl (t,u)[h(t,u) — Kou] <0

9 [Ki,Ko)with K = Ky — K; =K! >0if

[h(t,u) — Kiu]l[h(t,u) — Kou] < 0



Example

h(u) — hl(U:l) ’ hz = [aia /63]9 /6?, > oy 1= ]-a 2
ho(us)
. — a1 O o — B1 O
1 — 0 s ’ 2 — 0 ,@2

h € [Kla KQ]

K= Ky— K — B1—aq 0
0 B2 — a2



Example

[h(u) = Lul| < ~[[ul
Ki=L—~I, Ko=L+~I

[h(u) — Kru]' [h(u) — Kau] =
1R (u) — Lul|* = ~+*||lul[* < 0

K=Ky — K; =2~I



A function in the sector K, K2| can be transformed into a
function in the sector [0, co] by input feedforward followed
by output feedback

+ +
—»—Q—» K—l Y = h(t’ u) :@

A

n 7

Feedforward K1 Feedback
[KviQ] [OaK] [OaI] [0,00]
— — —
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State Models

Let us now define passivity for a dynamical system represented by the state model

r = f(z,u) (6.6)
y = h(z,u) (6.7)

where f : R®™ x RP — R" is locally Lipschitz, h : R™ x RP — RP is continuous,
f(0,0) = 0, and h(0,0) = 0. The system has the same number of inputs and
outputs. The following RLC' circuit motivates the definition.

* The origin is an equilibrium point.



State Models
Vo = hg(Zz) L

— = 1VW\ /"
Yy 2:2 + U2 — ”I:L
+ + o +
U U1 § 11 = hi(vq) vc—=C Vs §
i1} 3}
L&y = u— ha(x1) — @2
Cios = x1 — h3(x2)

y = z1+ hi(u)

Z.g p— hg(’l)g)



Vi(x) = %Lw% + %Cm%

/(; w(s)y(s) ds > V(x(t)) — V((0))
w(t)y(t) > V(2 (t), u(t))

Lxix1 + Cxoxo

z1[u — ha(z1) — x2] + x2[x1 — h3(x2)]

x1|u — hao(x1)] — x2hs(x2)

[931 + hq (u)]u — uhq (u) — a:lh,g(a:l) — :Bzhg(zcz)
uy — uhq(u) — x1hs(x1) — xahs(x2)



uy =V + uhi(u) + x1ha(x1) + xahs(x2)

If h1, ho, @and hg are passive, uy > V and the system is
passive

Case 1: If hy = hy = hg = 0, then uy = V; no energy
dissipation; the system is lossless

Case 2. If hy € (0,00] (uhi(u) > 0 for u # 0), then

oMy €000y > V4 wha(u)
The energy absorbed over |0, t| will be greater than the

increase in the stored energy, unless the input u(t) is
iIdentically zero. This is a case of input strict passivity



Case 3: Ifhy = 0and h, €[0,0]  then

y = x7 and uy > 174 + yha(y)

The energy absorbed over [0, t] will be greater than the
Increase In the stored energy, unless the output v Is
iIdentically zero. This is a case of output strict passivity

Case 4:If hg € (0,00) and hz € (0, c0), then

uy >V + x1ha(x1) + z2hs(x)

x1ho(x1) + x2hs(x2) IS a positive definite function of «.
This is a case of state strict passivity because the energy
absorbed over |0, t| will be greater than the increase in the
stored energy, unless the state x is identically zero



Definition: The system
= f(x,u), y=h(z,u)

IS passive If there is a continuously differentiable positive
semidefinite function V' (x) (the storage function) such that

: oV
uTy >V =—f(z,u), V(z,u)
Ox

Moreover, it is said to be

® losslessif uly =V

# input strictly passive if uly > V + uT o (u) for some
function ¢ such that ul'p(u) > 0, Vu # 0



# output strictly passive if uly > V + yT p(y) for some
function p such that y* p(y) > 0, Vy # 0

» strictly passive if uTy > V + 4 (x) for some positive
definite function

Example
Tr = u, Yy ==x

V(z) =42 = uy=V = Lossless



Example
T = u, y=x+ h(u), he€[0,c0]

V(z) = 32° = wuy =V +uh(u) = Passive
h € (0,00] = uh(u) >0Vu#0
= |Input strictly passive
Example

= —h(x) + wu, y=x, h € [0,o0]

V(z) =412 = uy=V +yh(y) = Passive

h € (0,00] = Output strictly passive



Example
r=u, y=h(x), he]|0,o]
V) = / h(oc)do = V = h(x)ié =yu = Lossless
0
Example
ar = —x + u, y = h(x), h € [0,00]
V(x) = a/ h(o)do = V = h(z)(—z+u) = yu—xh(z)
0

yu =V + ah(x) = Passive

h € (0,00] = Strictly passive



Positive Linear Systems

* PR and SPR Transfer Functions

b, P +b,_1p" 1+ .. +b,

h(p) = :
pe+a, 3 pRT otk ay

The coefficients of the numerator and denominator polynomials are assumed to be real
numbers and n =2 m. The difference n—m between the order of the denominator and
that of the numerator is called the relative degree of the system.

Definition 4.10 A transfer function h(p) is positive real if

Re[h(p)] 20 forall Re[p]=0 (4.33)

It is strictly positive real if h(p—¢€) is positive real for some € >0 .
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Example

Example 4.14: A strictly positive real function

Consider the rational function

1
p+A

h(p) =

which is the transfer function of a first-order system, with A > 0. Corresponding to the complex
variable p = 6 + j O,

1 _ C+A—jo
(C+AM)+jO (6+1)2+n2

h(p) =

Obviously, Re[#(p)] =20 if ¢ 20. Thus, A(p) is a positive real function. In fact, one can easily
see that A(p) is strictly positive real, for example by choosing € = A/2 in Definition 4.9. O

22/42



Theorem

Theorem 4.10 A transfer function h(p) is strictly positive real (SPR) if and only if
i) h(p) is a strictly stable transfer function
ii) the real part of h(p) is strictly positive along the jo axis, i.e.,

V©=0 Re[i(jo)]>0 (4.34)

23/42



Theorem

The above theorem implies simple necessary conditions for asserting whether a
given transfer function A(p) is SPR:

e h(p) is strictly stable

e The Nyquist plot of A(jw) lies entirely in the right half complex plane.
Equivalently, the phase shift of the system in response to sinusoidal inputs is
always less than 90°

e h(p) has relative degree is O or 1

e h(p) is strictly minimum-phase (i.e., all its zeros are strictly in the left-
half plane)

24/42



Example

Example 4.15: SPR and non-SPR transfer functions

Consider the following systems

-1
m(p) = —=
pc+ap+b
+ 1
hg(.ﬂ)= 2p
pE=paEl
hy(p) = ——
3 pt+ap+b
+ 1
hy(p) = 4

25/42



Example

The transfer furctions h, A, , and h5 are not SPR, because £, is non-minimum phase, h, is
unstable, and k4 has relative degree larger than 1.

Is the (strictly stable, minimum-phase, and of relative degree 1) function A, actually SPR?
We have
jo + 1 o+ 1] [- o2 -jo+ 1]

hy(jo) = =
* —02+jo+1 [1-0212+ w2

(where the second equality is obtained by multiplying numerator and denominator by the complex
conjugate of the denominator) and thus

—0%+1+0? _ 1
[1-0?12+0? [1-0?)?2+o0?

Re[ hy(jo) ] =

which shows that s, is SPR (since it is also strictly stable). Of course, condition (4.34) can also
be checked directly on a computer. O

26/42



Example

Example 4.16: Consider the transfer function of an integrator,
1
h(p) = -
p

Its value correspondingtop =0 + j® is

C—-jO
h(p)=———
0%+ m?
One easily sees from Definition 4.9 that A(p) is PR but not SPR. O

27/42



Theorem

Theorem 4.11 A transfer function h(p) is positive real if, and only if,
i) h(p) is a stable transfer function

(ii) The poles of h(p) on the j® axis are simple (i.e., distinct) and the
associated residues are real and non-negative

1ii) Re[h(jw)] 20 for any ® 20 such that jo is not a pole of h(p)

28/42



Definition: A p x p proper rational transfer function matrix
G(s) is positive real if

# poles of all elements of G(s) are in Re[s] <0

# for all real w for which jw Is not a pole of any element of
G(s), the matrix G (jw) + G' (—jw) is positive
semidefinite

$ any pure imaginary pole jw of any element of G(s) is a
simple pole and the residue matrix
limg_, (s — gJw)G(s) is positive semidefinite Hermitian

G (s) is called strictly positive real if G (s — ¢) is positive real
forsome e > 0



Scalar Case (p = 1):
G(jw) + G' (—jw) = 2Re[G(jw)]

Re|G(jw)] is an even function of w. The second condition
of the definition reduces to

Re|G(jw)] 2 0, Vw € [0, 00)

which holds when the Nyquist plot of of G(jw) lies in the
closed right-half complex plane

This is true only if the relative degree of the transfer function
IS Zero or one



Lemma: Suppose det [G(s) + GT(—s)] is not identically
zero. Then, G(s) is strictly positive real if and only if

® G(s) is Hurwitz
® G(jw)+ G (—jw) >0, VwER
® G(o0) +GT(c0) > 0o0r
Tim w?MT[G(jw) + GT (—jw)|M > 0
for any p x (p — q) full-rank matrix M such that

MT[G(c0) + GT(c0)]M =0

q = rank[G(oco) 4+ GT(00)]



Scalar Case (p = 1): G(s) is strictly positive real if and only
if

® G(s)is Hurwitz

® Re|lG(jw)] >0, Vw € [0, 00)

® G(oo) >0o0r

G(0)=0 Jim w?Re[G(jw)] > 0



Example:

G(s) = %

has a simple pole at s = 0 whose residue is 1
, 1
Re|G(jw)] = Re {—] =0, Vw#0
Jw

Hence, G is positive real. It is not strictly positive real since
1
(s —¢)
has a pole in Re[s| > 0foranye > 0




Example:

G(s) = , a > 0, Is Hurwitz
s+ a
Re|G(jw)] = T >0, Vw € [0,00)
. ) : . w?a .
lim w*Re[G(jw)] = lim =a>0 = GisSPR
W — OO W — OO w2 + a2
Example:
1 1 — w?
G — ) R G 1 —

G is not PR



‘Example:

- s+2 1 7
s+1 s+2
G(s) = is Hurwitz
—1 2
L s+2 s+1
- 2(24w?)  —2jw ]

14+w? 44+ w?2

G(jw) + G (—jw) = >0, VwER

27w 4
L 44-w? 14+w? |

G(oo)+GT(oo):[§ ﬂ, M:[H

lim w’M1T[G(jw) + GT(—jw)]M =4 = Gis SPR

w— O



Positive Real Lemma: Let
G(s) =C(sI — A~ 'B+D

where (A, B) is controllable and (A, C) is observable.
G (s) is positive real if and only if there exist matrices

P = PT > 0, L, and W such that

PA+ AP = 1L
PB cl — 1Tw
w'w = D+ D'



Kalman-Yakubovich—Popov Lemma: Let
G(s)=C(sI — A 'B+D

where (A, B) is controllable and (A, C) is observable.
G (s) is strictly positive real if and only if there exist matrices

P = PT > 0, L, and W, and a positive constant £ such

that
PA+ATP = —LTL —cP
PB = cT_Tw
wiw = D4+ DT



Lemma: The linear time-invariant minimal realization

r = Ax -+ Bu
y = Cx+ Du

with
G(s)=C(sI — A 'B+D
IS
# passive if G(s) is positive real
# strictly passive if G(s) is strictly positive real

Proof: Apply the PR and KYP Lemmas, respectively, and

use V(x) = %azTPaz as the storage function



ul'y — 6—V(Aa: + Bu)
Ox
= u!'(Cx + Du) — ' P(Ax + Bu)
= ulCx+ %’UJT(D + D)u
— %a:T(PA + ATP)x — " PBu
= ' (B'P+W'L)z + su' W'Wu
-+ %QBTLTL:B -+ %ea‘,‘TPa: _ z'PBu
= %(L:c + Wu)l (Lx + Wu) + %&:mTPa: = %e:cTPat
In the case of the PR Lemma, £ = 0, and we conclude that

the system is passive; in the case of the KYP Lemma,
e > 0, and we conclude that the system is strictly passive



Connection with Lyapunov Stability
Lemma: If the system

= f(z,u), y = h(z,u)

IS passive with a positive definite storage function V' (x),
then the origin of & = f(«, 0) is stable

Proof:



Lemma: If the system
= f(x,u), y = h(x, u)

s strictly passive, then the origin of & = f(«,0) is
asymptotically stable. Furthermore, if the storage function
Is radially unbounded, the origin will be globally
asymptotically stable

Proof: The storage function V' (x) is positive definite

oV aV
uTy = 6_12(33, u) = "p(a:) = _f(aja 0) = —’Lﬁ(ill‘)
T ox

Why is V' (x) positive definite? Let ¢(t; ) be the solution
ol 2 = (2.0, 2(0) ==



V < —9(x)
V(p(r,z)) — V(z) < — /0 (b)) dt, V€ [0,8
Vig(r,2) >0 = V(z)> /()'Tw(qb(t;:c)) dt

V(z) =0 = /OT b(p(t; ) dt =0, V T € [0, 5]

= Y(Pp(t;x)) =0 = o(t;2) =0 = =0



Definition: The system
= f(x,u), y = h(x, u)

IS zero-state observable if no solution of & = f(x,0) can
stay identically in S = {h(x,0) = 0}, other than the zero
solution x(t) = 0

Linear Systems
r=Ax, y=0Cx
Observability of (A, C) is equivalent to

y(t) = CeMz(0) =0 < 2(0) =0 < =(t) =0



Lemma: If the system

& = f(x,u), y = h(z,u)

IS output strictly passive and zero-state observable, then
the origin of & = f(x,0) is asymptotically stable.
Furthermore, if the storage function is radially unbounded,
the origin will be globally asymptotically stable

Proof: The storage function V' (x) is positive definite
oV oV
uTy b a_f(aja u) + yTp(y) = _f(a:a 0) < _yTp(y)
T Ox

Vz(t) =0 = y(t) =0 = x(t) =0
Apply the invariance principle



Example
Tr1 = X9, Ty = —a::c“;’—k:cz-l—u, Yy = x2, a,k >0
V(z) = 1 azy + 933
V = azrirs + xa(—ax] — kxs + u) = —ky* + yu
The system is output strictly passive
y(t) =0 & x2(t) =0 = axj(t) =0 = x1(t) =0

The system is zero-state observable. V is radially
unbounded. Hence, the origin of the unforced system is
globally asymptotically stable



