Chapter 7
Frequency Domain Analysis
of Feedback Systems



Frequency Response Method

 Describing a linear system by a
complex-valued function, the
frequency response

 For nonlinear systems, describing
function method can be used to
approximately analyze and predict
nonlinear behavior

e Hard nonlinearities



An Example of Describing
Function Analysis

Consider the Van der Pol equation
T+u@E-Di+x=0

Let us determine whether there exists a limit cycle in this system and, if so, calculate
the amplitude and frequency of the limit cycle (pretending that we have not seen the
phase portrait of the Van der Pol equation in chapter 2). To this effect, we first assume
the existence of a limit cycle with undetermined amplitude and frequency, and then
determine whether the system equation can indeed sustain such a solution. This 1s
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An Example of Describing
Function Analysis
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An Example of Describing
Function Analysis

NONLINEAR BLOCK




An Example of Describing
Function Analysis

Now let us assume that there is a limit cycle in the system and the oscillation
signal x is in the form of

x(t) = Asin(m?)
with A being the limit cycle amplitude and ® being the frequency. Thus,

x(t) = Amcos(®?)

u=—x2x = — A2sin(0f) Awcos(w?)
3 3
- _ AT“’ (1 - cos(2®f) ) cos(@?) = — % (cos(@f) — cos(3®r) )
A3 A% d .
=~ —— WCoS®W =— — [—Asin(w?
U i COS 1 dt[ n(m7) |
A2

A 4

TP
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An Example of Describing
Function Analysis

QUASI-LINEAR
APPROXIMATION

|

|

o | -
:Q | il | p*-ip+1

|

In the frequency domain, this corresponds to
u=N@A,®)(-x)
where

2
NA, o) = AT (o)



An Example of Describing
Function Analysis

Since the system is assumed to contain a sinusoidal oscillation, we have
x=Asin(O)=G(o)u=G{mw) NA, ®) (=x)

where G(j®) is the linear component transfer function. This implies that

1 +A200) p =0
4 (jo)r-pjo)+1

Solving this equation, we obtain

A=2 ow=1



An Example of Describing
Function Analysis

Note that in terms of the Laplace variable p, the closed-loop characteristic equation of
this system is

2
1A p (5.3)
4 pP-up+1

whose eigenvalues are

11’2=u;p(A2-—4)iJ614u2(A2—4)2—1 (5.4)

Corresponding to A =2, we obtain the eigenvalues A;,=1j. This indicates the
existence of a limit cycle of amplitude 2 and frequency 1. It is interesting to note
neither the amplitude nor the frequency obtained above depends on the parameter [ in
Equation 5.1.
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Applications Domain

r(t) =0
+

Nonlinear Element

e(t)

- c=f(e)

c(t)

Linear Element

y(t)

=

>  G(p)




r(t) e(t)

Example 5.1

Gl (p)

c(t)

7~

u('t)

| G
—} p(p)

¥(t)

GZ(P) -t

11/40



The second class of systems consists of genuinely nonlinear systems whose
dynamic equations can actually be rearranged into the form of Figure 5.3. For
example, the nonlinear equation

mff+c5:+kx+k1x3:0
can be rewritten as

mff+ci+kx=~k1x3

r=10 3 1 x(t)
n 0 ~ -

mp2+cp+k
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Prediction of limit cycles is very important, because limit cycles can occur in
any kind of physical nonlinear system. Sometimes, a limit cycle can be desirable. This
is the case of limit cycles in the electronic oscillators used in laboratories. Another
example is the so-called dither technique which can be used to minimize the negative
effects of Coulomb friction in mechanical systems. In most control systems, however,
limit cycles are undesirable. This may be due to a number of reasons:

1. limit cycling, as a way of instability, tends to cause poor control
accuracy

2. the constant oscillation associated with the limit cycles can cause
increasing wear or even mechanical failure of the control system
hardware

3. limit cycling may also cause other undesirable effects, such as passenger
discomfort in an aircraft under autopilot
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Basic Assumptions

. there is only a single nonlinear component
. the nonlinear component is time-invariant

. corresponding to a sinusoidal input e = sin(®t) , only the fundamental
component c(t) in the output c(t) has to be considered

. the nonlinearity is odd

The third assumption is the fundamental assumption of the describing function
method. It represents an approximation, because the output of a nonlinear element
corresponding to a sinusoidal input usually contains higher harmonics besides the
fundamental. This assumption implies that the higher-frequency harmonics can all be
neglected in the analysis, as compared with the fundamental component. For this
assumption to be valid, it is important for the linear element following the nonlinearity
to have low-pass properties, i.e.,

|G(jw) | >> |G(jnw)| for n=2,3, .. (5.5)
This implies that higher harmonics in t'he output will be filtered out significantly.

Thus, the third assumption is often referred to as the filtering hypothesis.
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Basic Definitions

e Fourier series

)

cy=—>+ ; [a, cos (not) + b, sin(n o1)] (5.6)

where the Fourier coefficients a;’s and b;’s are generally functions of A and o,
determined by

a,= % L’; c(t) d(?) (5.72)
a, = 1 j " c(f)cos(nwi)d(mt) (5.7b)
8 —TC

bp=2]" csin(nond) (5.7¢)
LAY



Basic Definitions

A sin(® ¢) c(t) A sin(ot) M sin(® t+b )
» NL (—» » N(A, ®) -

Figure 5.6 : A nonlinear element and its describing function representation

c(?) = c1(t) = a; cos(wr) + bysin(wr) = Msin(wz + ) (5.8)

where

M(A,m) = \lalz +b?  and O(A,w) = arctan(a,/b,).
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Frequency Response

AsIn wt

Ael!

A|G(ja))|sin ot(+ £G(jw))

G(Jw)

G(Jo) =

A|G(jw)|e el

Aeja)t



Definition of Describing
Function
c;=Mel(@1+0) = (b, +ja,) e/ O

the describing function of the nonlinear element to be the complex ratio of the
fundamental component of the nonlinear element by the input sinusoid, i.e.,

Mel(O1+0)) pAr . 1 .
- = s =
N(A, ) VI ¢ A(bl +jay) (5.9)
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Computing Describing Function

Example 5.2: Describing function of a hardening spring
The characteristics of a hardening spring are given by
y=x+x/2

with x being the input and y being the output. Given an input x(r) = Asin(wz), the output
y(t) = Asin(wr) + A3 sin3(mr)/2 can be expanded as a Fourier series, with the fundamental being

y(f) = a,coswt + b;sinwt
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Computing Describing Function

Because y(#) is an odd function, one has a; = 0, according to (5.7). The coefficient b 1s

T
b= % j [Asin(w?) + A3 sind(01)/2] sin(w?) d(®f) = A + %A3

— Tl
Therefore, the fundamental 1s
3.3 .
yi=(A+ gA- )sin(m1)

and the describing function of this nonlinear component is

NA,0)=NA) =1+ %A2
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Common Nonlinearities In
Control Systems
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Common Nonlinearities In
Control Systems

 Backlash and hysteresis




Describing Function of
Saturation Nonlinearity
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Describing Function of
Saturatlon Nonlinearity
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Describing Function of
Saturation Nonlinearity

Consider the input e(7) = Asin(®?). If A < q, then the input remains in the linear
range, and therefore, the output is y(f) = kA sin(w?). Hence, the describing function is
simply a constant k.

Now consider the case A >a. The input and the output are plotted in Figure
5.10. The output can be expressed as

o(t) = {kAsin(mr) 0<wz< oty
ka 0t <wisS /2

where wf; =sin~ L(a/A). The odd nature of c(¢) implies that ay =0 and the symmetry
over the four quarters of a period implies that
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Describing Function of
Saturation Nonlinearity

/2
by = i jn c(t)sin(wi) d(mt)
T
/2
=21 kasin(wh) don) + [ kasin(1) d(or)
o T or,

2
=%[CM1+E | a

4 5.10
- 1 AZ} (5.10)

Therefore, the describing function is

bl 2k a a a2
NA) =—=Lrsin~12+2 |1 -2 5.11
(4) A T [sin A A ,42] ( )



Describing Function of
Saturation Nonlinearity
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Describing Function of
Relay (on-off) Nonlinearity

As a special case, one can obtain the describing function for the relay-type (on-
off) nonlinearity shown in Figure 5.12. This case corresponds to shrinking the linearity
range in the saturation function to zero, i.e., a — 0, k — ©°, but ka = M. Though b,
can be obtained from (5.10) by taking the limit, it is more easily obtained directly as

/2
znl=fj"“c Msin(on) d(of) =+ M
Y0 T

Therefore, the describing function of the relay nonlinearity is

N(a) = M (5.12)
TA



Describing Function of
Relay (on-off) Nonlinearity
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Describing Function of
Dead-zone Nonlinearity
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Describing Function of
Dead-zone Nonlinearity
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Describing Function of
Dead-zone Nonlinearity

c(r)—{ 0< of < oty
k(Asin(®?) — 0) WHSwrs /2

where 0#) =sin~ 1(§/A). The coefficient b; can be computed as follows
/2 T2
by = i J‘E c(t) sin(wt) d(mt) = -4-_[ k(Asin(mt) — 0) sin(®?) d(mt)
Yo T o,

5 & |, &
2-2 1 1-5) (5.13)

Therefore, the describing function is

NA) =25 @ sin-19 _
T 2 A



Describing Function of
Backlash Nonlinearity
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Describing Function of
Backlash Nonlinearity

c(t) = (A - d)k %{wrﬂn—mrl

c(t) = (Asin(®?) + d)k T—0H <0< %‘m

c(t) =—(A - )k —3;{ 0 <2T — 0
() = (Asin(@t) -k 2n -1 < mtg_ﬁzn
4kd &
=222(2-1
1=— (=1

1
NI = ¢ .\falz +b2

:xﬁ E_ P 28__ _ 28_ _ 26_ o)
by 11:[2 sin”* (——=1) (? I)Jl (? 1)

A IN(A) = tan~ 1 (a1/b;)
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The Nyquist Criterion and Its
Extension

o(p)=1+G(p)H(p) =0
G(p)H(p)=-1

—=O—{ ) -

H(p) oo




The Nyquist Criterion and Its
Extension

1. draw, in the p plane, a so-called Nyquist path enclosing the right-half
plane

2. map this path into another complex plane through G(p)H(p)

3. determine N, the number of clockwise encirclements of the plot of
G(p)H(p) around the point (- 1,0)

4. compute Z, the number of zeros of the loop transfer function 6(p) in the
right-half p plane, by

Z=N+P , where P is the number of unstable poles of &(p)
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The Nyquist Criterion and Its
Extension

p plane A
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The Nyquist Criterion and Its
Extension

o(p) =1+ K G(p)H(p)

G(p)H(p)=-1/K
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Existence of Limit Cycles

e(t) c(t) y(t)
 N(A,0) —G(jo ) —

Gjo)NA,w)+1=0

1

G(jo) =— NA.0)




Frequency-Independent
Describing Function
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Frequency-Dependent
Describing Function
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Stability of Limit Cycles
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